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Modelling evolutionary dynamics in asexuals

* Main objectives:
- To predict the evolution of asexual organisms (viruses, bacterias, cancer
lineages)
- To understand complex interplay of drift, selection and mutation in asexuals
* Challenge: Management strategies of resistance emergence,
World Health Organization describes antibiotic resistance as one of the biggest
threats to global health, food security, and development today (WHO 2016).
* ANR Project RESISTE: Evolutionary rescue, stochastic effects and interactions with
environmental stress. Partnership with Montpellier Institute of Evolutionary Sciences

(experimental evolution of bacterias, theoretical models)

Agence Nationale de la RechercheI :
I ] nstitut des Sciences de I'Evelution-Montpellie
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Comments and basic definitions

* Our method. We follow the expected fitness distribution in asexual

populations.

* Fitness. Genotype (=individual) reproductive success.

* Drift. Random sampling process of the individuals to form next

generation
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This is a blackboard




Long term evolution experiment (Lenski’s experiment)

Fitness is measured in 12 initially identical populations of asexual Escherichia
coli bacteria since 24 February 1988 (>70000 generations)

Each day, 1% of each population is transferred to a flask of fresh growth
medium

Relative fitness is measured by competition with (frozen) ancestral bacteria
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Dynamics of fitness distribution:
2 main biological frameworks / 3 approaches

A. Context-intependent effect of mutations (non-epistatic mutation effects on fitness)
I. Wright-Fisher stochastic individual-based model (used as a benchmark)
Il. Nonlocal transport PDEs and cumulant generating functions

Ill. Integro-differential equations

B. Context-dependent effect of mutations (epistatic effects induced by an optimum)
I. Fisher’s Geometrical model and Wright-Fisher stochastic IBM
Il. Nonlocal nonlinear transport PDEs and cumulant generating functions

lll. Integro-differential equations

C. Discussion/extensions: anisotropic effects of mutations
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Part A: context-independent effect of mutations




A.l. Wright-Fisher microscopic model

- Standard model. Many references: see e.g. [Rice 2004, Lambert 2008]

Mutation
Kernel J

/ Generation t \ ﬂeproduction/selectior\ / Mutation \ Deleterious

o N individuals are r — \ |
N individuals sampled with Nb mutations/indiv. : \
replacement k~PU) N

- Interplay of selection, drift and mutation, in a population of constant size N

.

/ -0,
Fitness of the indiv.: * Nb offsprings: ] /
[ IHNESS ! 'VN)] [ . ] + [ Mutation effect on ) Beneficial

m; = (ml,...,m! ~ Multi( NV, exp(my))

fitness: m — m + s
00000 00000 00000 k
\ / \ / \ 0 005

Generation t+1 :
Deleterious +
beneficial
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A.l. Wright-Fisher microscopic model

Numerical simulations with N = 10°

Deleterious mutation kernel

Distribution of fitnesses:
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A.ll. Cumulant generating functions approach
Basics

Main objective: to obtain an analytic description of the microscopic WF model

Cumulant generating function (CGF).

N
C(t,z) =1In (% > emiz) , 2 >0,
i=1

Important properties.

Mean m; = 0,C(t,0) and variance V; = 9,,C(t,0).
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A.ll. Cumulant generating functions approach
Effect of mutations on C(t, z): formal derivation

- Given the distribution of fitness at time t, we define
N

M(t,z) = 3 em™*
i=1

- At M (t, z) =expected variation in M due to mutation during 0 ¢

_NUG&t (NUSt*F

- Poisson number of mutations: P(nb mut=k) =e¢ 0

- As 6t < 1, P(nb mut=1) ~ N U §t, P(nb mut > 1) = 0.

- Mutation of effect s, parent of fitness m:
At M (t, z|s,m) = N U 6t (e(s+m)z — emz) /N =Uodte™?(e** — 1)
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A.ll. Cumulant generating functions approach
Effect of mutations on C(t, z): formal derivation

- Taking the expectation over the distribution of mutation effects on fitness (mutation kernel J):

&)

At M (t, zlm) = / At M (t, z|s,m) J(s)ds = U fte™” (/

— 0

J(s)e®* ds — 1)

- Summing over the parents, we get :

o ¢}

Amut M(t, 2) = U 5t M(t, 2) ( /

— 0

J(s)es* ds — 1)

- Mutational contribution to the CGF C(t, z) (formally):

Amu t? >
t(g( ?) ~U (/ J(S)e“ds—l)

— 00
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A.ll. Cumulant generating functions approach
Formal derivation of a PDE on E(C(t, z))

Effects of selection and drift described by a system of stochastic differential
equations with branching (large N approximation, [Ewens 2004]):

dp; = (m; —m(t))p;dt + —]{[pz- pde;fj
JF#1
Infinitesimal generator:

N 0
Dgo(P) — Zizlpi(mz mt) gg()f))—l_ﬁ\f (Z@ 1pz(1 pZ) Zz 1 Zg i+1 pzpﬂ 8pcff§117)3)

PDE obtained by Feynman-Kac theorem with C(t, p, z) = EPo[C(t, p, z)] + mutation:

C(t, z): expected CGF among replicate populations

0.C(t, 2) = ?26(75, 2)—0,C(t,0)4+U ([, J(s)e**ds — 1) o (1 — EPo [¢C1:22)=2C002)])|
)
Y ] l J
selection mutation genetic'drift
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A.ll. Cumulant generating functions approach
Fisher’s fundamental theorem

- Fisher’s fundamental theorem (without mutations):
« The rate of increase in fitness of any organism at any time is equal to its genetic
variance in fitness at that time » (Fisher 1930)

Derivate w.r.t. z the expression
0iC(t, 2) = 0,C(t,2)—0,C(t,0)+U ([ J(s)e**ds — 1)+5% (1 — EPo [¢C(#22)720(02)])

leads to:
0:0.C(t,z) = 0..C(t,2) + U [, sJ(s)e**ds
+ﬁEPO [(2820(1&, 2z) — 20,C(t, z))ec(t’zz)_QC(tﬂz)}

Computing the result at z = 0:
oym(t) = Var(p(t,-)) + U [, sJ(s)ds

\_'_I\_'_I

Rate of increase in Expected variance ~ Mean effect of
expected mean fitness  |In fitness mutations on fitness
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A.ll. Cumulant generating functions approach
Solution of the PDE

C(t, z): expected CGF among replicate populations Large pop size
assumption
AC(t, 2) = 0.C(t, 2)—0-C(t,0)+U (fy J(s)es*ds — 1)+ (1 - M—ww) .
| ] |\ )
Y Y | )
selection mutation m

Theorem (Martin, R, 2016)

t
The unique solution is: C(t,z) = Colz+1t) — Co(t) + U/ B(z+v) — B(v)dv,
0

with: [(z) = [, J(s)e**ds.

Consequences:
EPo(my) = Cp(t) + U(B(t) — 1) and EP°(V;) = Cy(¢) + U B'(t) = U
with:  pg = [, sJ(s)ds
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A.ll. Cumulant generating functions approach
Numerical computations

Purely deleterious mutation kernels: very accurate results

Mean, variance: PDE vs stochastic
simulations

10.3

-0.015% . - - - 0
0 200 400 i 600 800 1000




A.ll. Cumulant generating functions approach
Numerical computations

Mutation kernels including benefical mutations: accurate at the beginning,

. DFE
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A.lll. Integro-differential approach

Main objective: to connect our formal results on CGFs with the theory of IDEs

Standard model for the distribution of the fitness m in an infinite population
(Gerrish et al., 2007; Sniegowski and Gerrish, 2010; Desai and Fisher, 2011):

Op(t,m) =U (Jxp—p)(t,m)+ p(t,m)(m —m(t)),

with (J *p —p)(t,m) = /R J(m —y)(p(t,y) — p(t,m)) dy,
and m(t) = [, yp(t,y) dy.

Close to the ““replicator-mutator" eq. studied by [Alfaro and Carles (2014)]:

8tp(t7 m) — ammp(tv m) + p(t, m) (m - m(t)) .

Assumptions (necessary for the existence of a time-global solution):

lim po(m)e®™ =0, / J(y)e®¥ldy < 400 for all a > 0.
™m oo R
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A.lll. Integro-differential approach
Results - existence

Oip(t,m) =U (Jxp—p)(t,m) + p(t,m) (m —m(t)),

Theorem (Gil, Hamel, Martin, R, 2017)

« Existence of a unique time-global solution

« it satisfies the same equation as in part A.11 of the talk:

« the unique solution satisfies:

C(t,Z) ZOU(Z-I—t) C() —I—Ufo Z-|—’U)

with: ((z) = [, J(s)e**ds.

 the CGF is well-defined C(, z) := In ([, p(t, m)e*™ dm)

0C(t,z) = 0.C(t,z) — D.,C(t,0) + U ([ J(s)e¥*ds —

1).

o 6(’0)61’0,
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A.lll. Integro-differential approach: results — large time

Theorem (Gil, Hamel, Martin, R, 2017)

Case 1: deleterious mutations only
The distribution p(t,.) converges weakly to a distribution p,, (known CGF)

Case 2: presence of beneficial mutations

The mean fitness m(t) increases exponentially fast. V(t) — +oc.

— unrealistic
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Consistence with Lenski’s experiment
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Part B: context-dependent effect of mutations




B.l. Fisher’s Geometrical Model (FGM)

The FGM is a phenotype-fitness landscape model:

- Describes the relationships between (n-dimensional) phenotype and fitness

- Takes into account the existence of a unique phenotype optimum g* € R"
(here, g* = 0 for the sake of simplicity)

Assumptions:

- Each individual is characterized by a « phenotype » g € R"

_llg-g*II*

- The relative fitnesses are m(g) = 5

I N?A Lionel Roques
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B.l. Fisher’s Geometrical Model (FGM)

Mutation effects on fitness:

[] Beneficial mutations

>
[] Deleterious mutations

9@ Genotype

Optimal genotype
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B.l. Fisher’s Geometrical Model (FGM)

Example: Gaussian FGM. One of the most standard models of evolutionary quantitative
genetics [Kimura 1965, Lande 1980]

g; — g; + dg; with dg; ~ N(0,\1,,)

A
&
Stochastic representation of the
mutation effects on fitness: ‘
ﬁ\ o s bindfiques
m _) m + S éj' I? ::1::::\0:m| o5
With Qénotype optimal Jyl(m _ yl)
A 2m
_ _ 2 o Jyo (M — o)
slm ~ —m n, . o
| 2 X 2
[Martin, Lenormand 2015]
— T T ’
Yo )21 0 m

Mutation kernel J,,,, represented by its moment generating function:
f_oooo]m(s)eszds = M*(Z)ew(z)m,

with M, (z) =

—1z2

1+Az

and w(z) = . [Martin, Lenormand 2015]

1
(147 z)n/2

I N?A Lionel Roques
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B.l. FGM + Wright-Fisher microscopic model

/ Generation t

N individuals

~

Phenotypes: g; € R"
Fitnesses:

mi = —|lg; — g*11*/2

00000

o J

Generation t+1
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ﬂ{eproduction/selectioh

N individuals are
sampled with
replacement in the
previous generation

Fitness of the indiv. : Nb offsprings:
_ (o] N . +
m; = (myg,...,m;) * ~ Multi(V, exp(m;))

00000

/ Mutation \
rNb mutations/indiv. : )
k~P(U)
\_
(Mutation effecton
phenotype:
gi— 9gi+dg;

_Ex: dg; ~ N(0,A1,)

( )
Mutation effect on

L fitness: m; — m; + SJ

. oocoo>

Context-dependent mutation kernel
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B.l. Numerical simulations

Context-dependent kernel Context-dependent kernel
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B.ll. Cumulant generating functions approach
Cumulant generating function (CGF).

N
C(t,z) =1In (% > emiz) , 2 >0,
i=1
-Mean m; = 0,C(t,0) and variance V; = 0,.C(t,0).

-Weight of the optimal phenotype: p(t,0) = exp(C(t, +00)).

-Upper bound of the support: supsupp p(t,-) = 9,C(t, +00).
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B.ll. Cumulant generating functions approach
Effect of mutations

Same type of arguments as in the context-independent case, with

N
M(t2) = % 3 em
1=1

o0

and the assumption: / Jm(s)e®*ds = M, (z)e”*)™,

— 0

AmutC(t, Z)
ot

we get: ~U (M*(z) etz tuw(2))=Clt2) _ 1)
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B.ll. Cumulant generating functions approach
Nonlocal nonlinear PDE on the expected CGF

C(t,z): expected CGF among replicate populations

Deterministic approximation: N >> 1.

0:C(t,z) = 0,C(t,z) — 0,C(t, 0) + U (M, (z)eltzFw(z)=Clt2) _ 1') .
\
| Y
selection mutation

Approximate equation in the large U/ regime:

DC(L 2) ~ a(2)D.C(L, 2) — D.C(1,0) + B(2), ) rrention

with a(z) = 1 + UM, (2)w(z) and 8(z) = U (M,(z) — 1) for ¢(t, 2)

Gaussian FGM,
| Clonal initial pop 9-C(t,0) = m(t) ~ VU X tanh(tvV'U A) + mg/ cosh” (tVU A)
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B.ll. Cumulant generating functions approach
Numerical computations

Numerical solution of the PDE

S

approximate analytic solution

S

Individual-based stochastic simulations

SO &
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B.ll. Cumulant generating functions approach
Numerical computations

Distribution: approximate analytic solution (large U/A)
Vs
Individual-based stochastic simulations

t=0

30
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B.lll. Integro-differential approach
The equation

Main objective: to connect our formal results on CGFs with the theory of IDEs

We consider the equation:

_J/ A

Op = U (Jy ®p —p) + (m —m(t))p

'
mutation selection

with J, ® p(t,m) = /

J,(m — y)p(t,y) dy and T(t) = f yp(t,y) dy.
R

R

Assumptions: supp po C (—o0, 0], supp J,, C (—o0, —y], for all y <O0.
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B.lll. Integro-differential approach
Results - existence

Theorem (Gil, Hamel, Martin, R, 2018)

« Existence of a unique time-global solution

- the CGF is well-defined C(t, z) := In ([, p(t, m)e*™ dm) ,
o0

 if / Jm(s)e** ds = M, (z) e ™,

— 00
as in the Gaussian FGM, it satisfies the same equation as in part B.II
of the talk:

O:C(t,2) = 0,C(t,2) — D,C(t,0) + U (M, (2)eC(h=H(z)=C(1:2)) _ 7).
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B.lll. Integro-differential approach
Results — stationary states

Convergence (not proved, this is an assumption here):

We assume that (p(t,-)):>0 converges weakly towards a measure poo:

lim /gb p(t,m) dm:qub(m) dpoc(m)

t——+o0

for all continuous function ¢, s.t. ¢(m) = O(m) as m — —oo.

Stationary equation

0

We define C(2) = In (/

— OO

ezmd'poo(m)) , for all z > 0,

Then C’_(2) — C'_(0) + U (ecoo(z+w(z)>—coo(Z>M*(z) _ 1) )
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B.lll. Integro-differential approach
Results — stationary states

Proposition (Gil, Hamel, Martin, R, 2018)

Moo = CL_(0) > —U.

Furthermore, writing p,, as a sum of two measures:
Poo(m) = (1 — p)p"(m) + pd{m=oy(m), for all m € R,

we get,

Proposition (Gil, Hamel, Martin, R, 2018)

p=0o0r my =-U
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B.lll. Integro-differential approach
Results — stationary states

RO PN
Let s} = ( / | ds) the harmonic mean of J
oo IS

(mutation kernel at the optimum)

Theorem (Gil, Hamel, Martin, R, 2018)

o if 57, =0
— then p =0,
— additionnally, if lim (z 4+ w(z)) < +o00 then My > —U,

z—r+00
o if s7; # 0 then
— it U < 5% then p > 0 and Mo, = —U;

— let U :=inf {U > s% s.t. 32y > 0 with 1 + Uw(z;)M,(z1) = 0},
if U > U, then p =0 and m(400) > —U.
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

We recall that: o
/ Jm(s)e*? ds = M, (z) e ™,

—00
+00 —1
In all cases, we have s}, = ( M*(z)dz>
0
. _ . _ —Az?
For the Gaussian FGM: M, (z) = L and w(z) = —

sy =0<+= f0+oo M, (2)dz = +o00 <= n < 2.

lim (z+w(z)) =1/A< o0

z—+00

For n > 2, s}, = A(n —2)/2

N A\ (n/2 4 1)n/2-|—1
F 2, U = —
or n > 2, 4 (n)2 = 1)n/21
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, n < 2:

p = 0and my, > —U.

U=0.05 sH*=0 n=2
po=10-02, A=1/30.
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, n < 2: p = 0and my, > —U.

U=0.05 n=2 t=0
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fitness distribution
40 m
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, n > 2and U < sj;:  p > 0and m,, = —U.

U=0.005 sH*=0.066667 n=6 5 U=0.005 sH*=0.066667 h=6 t=2000
Po = 6—0,2, )\ — 1/30 fitness distribution
3 o :]bd
25b
2 1
—E\\ 2 i
T |
15F }
0 1 : |
2000 }
o
02 ii
0 ::
0 1 1 1 i

-0.25 -0.2 -0.15 0.1 -0.05 0
Fitness distribution

Reminiscent of Pleiotropy and the preservation of perfection, Waxman and Peck, Science, 1998
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, n > 2and U < sj:  p > 0and my, = —U.

U=0.005 n=6 t=0

3 I T

fitness distribution I
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM,n > 2and U > U: p = 0and imy, > —U.

U=0.5 sH*=0.066667 n=6 o U=0.5 n=6 t=70
po = d_0.2, )\:1/30. '

p(t.m)

100 .|

Rk %& 50
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B.lll. Integro-differential approach
Results — stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM,n > 2and U > U: p = 0and imy, > —U.

U=0.55 n=6 t=0
10 ' ' r
. fitness distribution |
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Part C. Extension - anisotropic mutation effects
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Equation driving the phenotype distribution

Mutation effects on fitnhess:

Dynamics of phenotype distribution,
with anisotropic mutation effects:
Dq(t, x) Z”@ Diiq(t, x) + (m(x) —m(t)) q(t, %), t > 0, x € R"

with:
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Mathematical results

(Hamel, Lavigne, Martin, R, 2019)

e Existence, uniqueness of the solution

e Equation for the fitness distribution (degenerate parabolic)

e Expression for the mean fitness

e Existence of 'plateaus’

Initially clonal population leads to

n 2

2

(t) = Z (@ (tanh? (u;t) — 1) — % tanh (‘u%-t)) :

=1

=INRA
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Model fit

Isotropic:

Anisotropic:
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Thanks a lot for your attention!
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A.lIV. Free boundary approach - presentation

Main objective: to build a model at a mesoscopic scale:
- captures some features of the microscopic model (support of the solution
remains bounded, finite speed of adaptation)
- analytically tractable PDE framework

=

/ Inspired from the physics of ice melting.

n
—
@D
95
o
@)
c
>
o
QD
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<

7N\

Equation

T'=0,t>0, x € 0,

(0, = DAT, t >0, x €y,

0T = p|VT|?, t >0, v € 0,

~

A/

with

m(t) = [, sp(t, s)ds and D = MpU/2, My = /
R

\ T(O,SU) = To(aj), x € o,
Free boundary: _
4 fitness of the)l;est Introduce a free boundary in the PDE: )
individual Op = DOZp+ (m —m(t))p, t>0,meR

s2J(s)ds
J
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A.lIV. Free boundary approach - TW solutions

We introduce the FBP, for each parameter p > O:

Op =D p+ (m—X(t))p, t >0,m € (—o0, s(t))
p(t,s(t)) =0, t>0

S() = —p D oplts(t)), >0, with X(0) = (t) = 7 5 (0).
See [Du and Guo, 2012] for related eqgs with KPP nonlinearity.
Theorem (Garnier, Martin, R, 2017)
For each p > 0, existence of a unique travelling wave solution:
p(t,m) = ¢(m —vt) and s(t) = vt with ¢ > 0 on (—o00,0) and/ d(y) dy = 1l

Explicit solution: ¢(z) = D73 Ai,(_zo) e~ 2D Al( — 20 — z/D1/3)
Ai : Airy function solving Ai"(2) — zAi(z) = 0, and Ai(—zq) = 0.
Speed: u = E A1( Zo)/ e202/3 Ai(z — zq) dz.
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A.lIV. Free boundary approach — population size N

Objective: find a relationship connecting p, v and N.

Define:
t,: expected time to establish a new beneficial mutation beyond the best fitness class

A: expected increase in the best fitness class due to this beneficial mutation

(=0 d(m) t1=t,: o(m-vt )

-
-

- m
i vi=h

ty L /2D A~ s J(s)ds/ J(s)ds
v Nwv 7’ 0 0

Using v = & and the previous relationship p = f(v), we get:

¢
v~ K(D,\)[log(N)]*3|(explicit formulas for v and u)

— consistent with a formula of Neher and Hallatschek (2013) for stochastic integro-differential eqs
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A.IV. Free boundary approach — numerical

computations
Free boundary approach vs stochastic simulations

Asymptotic distribution Trajectory of adaptation
X I()J
0.28¢ g 11.4
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A.IV. Free boundary approach — numerical computations

Free boundary approach vs Integro-differential approach vs stochastic simulations

Distribution, free boundary Distribution, integro-differential
t=0 =0
60 60 . .
50 50
40 40
Sy & 39
= o,
20 20
10 10
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
17 Tik

Mutation kernel: A

-
o=

=INRA

SCIENCE & IMPACT




