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Modelling evolutionary dynamics in asexuals

• Main objectives: 

- To predict the evolution of asexual organisms (viruses, bacterias, cancer 

lineages)

- To understand complex interplay of drift, selection and mutation in asexuals

• Challenge: Management strategies of resistance emergence,

World Health Organization describes antibiotic resistance as one of the biggest 

threats to global health, food security, and development today (WHO 2016).

• ANR Project RESISTE: Evolutionary rescue, stochastic effects and interactions with 

environmental stress. Partnership with Montpellier Institute of Evolutionary Sciences 

(experimental evolution of bacterias, theoretical models)
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Comments and basic definitions

• Our method. We follow the expected fitness distribution in asexual 

populations.

• Fitness. Genotype (=individual) reproductive success.

• Drift. Random sampling process of the individuals to form next 

generation
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This is a blackboard
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Long term evolution experiment (Lenski’s experiment)

Fitness is measured in 12 initially identical populations of asexual Escherichia 
coli bacteria since 24 February 1988 (>70000 generations)

Each day, 1% of each population is transferred to a flask of fresh growth 
medium

Relative fitness is measured by competition with (frozen) ancestral bacteria
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Dynamics of fitness distribution:

2 main biological frameworks / 3 approaches

A. Context-intependent effect of mutations (non-epistatic mutation effects on fitness)

I. Wright-Fisher stochastic individual-based model (used as a benchmark)

II. Nonlocal transport PDEs and cumulant generating functions

III. Integro-differential equations

B. Context-dependent effect of mutations (epistatic effects induced by an optimum)

I. Fisher’s Geometrical model and Wright-Fisher stochastic IBM

II. Nonlocal nonlinear transport PDEs and cumulant generating functions

III. Integro-differential equations

C. Discussion/extensions: anisotropic effects of mutations
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Part A: context-independent effect of mutations 
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- Standard model. Many references: see e.g. [Rice 2004, Lambert 2008]

- Interplay of selection, drift and mutation, in a population of constant size N

Lionel Roques 

A.I. Wright-Fisher microscopic model

Generation t

N individuals

Reproduction/selection

N individuals are 

sampled with 

replacement

Nb mutations/indiv. :

Mutation

Mutation effect on 

fitness:

Mutation

Kernel J

Deleterious

Beneficial

Generation t+1

Fitness of the indiv.: Nb offsprings:

Deleterious + 

beneficial
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A.I. Wright-Fisher microscopic model
Numerical simulations with 𝑵 = 𝟏𝟎𝟓

Deleterious mutation kernel

Distribution of fitnesses: Distribution of fitnesses:

Beneficial mutation kernel
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Main objective: to obtain an analytic description of the microscopic WF model

A.II. Cumulant generating functions approach
Basics
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A.II. Cumulant generating functions approach
Effect of mutations on 𝑪(𝒕, 𝒛): formal derivation

- Given the distribution of fitness at time 𝑡, we define

-

-

-

-
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A.II. Cumulant generating functions approach
Effect of mutations on 𝑪(𝒕, 𝒛): formal derivation

- Taking the expectation over the distribution of mutation effects on fitness (mutation kernel 𝐽):

- Summing over the parents, we get :

- Mutational contribution to the CGF 𝐶 𝑡, 𝑧 (formally):
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A.II. Cumulant generating functions approach
Formal derivation of a PDE on 𝑬(𝑪(𝒕, 𝒛))

Effects of selection and drift described by a system of stochastic differential 

equations with branching  (large 𝑁 approximation, [Ewens 2004]):

Infinitesimal generator:

PDE obtained by Feynman-Kac theorem with 𝒞 𝑡, 𝒑, 𝑧 = 𝐸𝒑𝟎[𝐶(𝑡, 𝒑, 𝑧)] + mutation:

selection mutation genetic drift
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A.II. Cumulant generating functions approach
Fisher’s fundamental theorem

- Fisher’s fundamental theorem (without mutations):

« The rate of increase in fitness of any organism at any time is equal to its genetic 

variance in fitness at that time » (Fisher 1930)

Rate of increase in 
expected mean fitness

Expected variance
In fitness

Mean effect of 
mutations on fitness
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A.II. Cumulant generating functions approach
Solution of the PDE

selection mutation genetic drift

Large pop size 
assumption

Theorem (Martin, R, 2016)

The unique solution is:

with:

Consequences:

with:
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Purely deleterious mutation kernels: very accurate results

A.II. Cumulant generating functions approach
Numerical computations

Mean, variance: PDE vs stochastic 

simulations
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A.II. Cumulant generating functions approach
Numerical computations

Mean, variance: PDE vs stochastic 
simulations

Mutation kernels including benefical mutations: accurate at the beginning, 

Incorrect behaviour after some time due to the neglected drift term
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Main objective: to connect our formal results on CGFs with the theory of IDEs

A.III. Integro-differential approach

Standard model for the distribution of the fitness m in an infinite population 

(Gerrish et al., 2007; Sniegowski and Gerrish, 2010; Desai and Fisher, 2011):

Close to the ``replicator-mutator" eq. studied by [Alfaro and Carles (2014)]: 

Assumptions (necessary for the existence of a time-global solution):
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A.III. Integro-differential approach
Results - existence

Theorem (Gil, Hamel, Martin, R, 2017)

• Existence of a unique time-global solution

• the CGF is well-defined

• it satisfies the same equation as in part A.II of the talk:

• the unique solution satisfies:

with:
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A.III. Integro-differential approach: results – large time

Case 1: deleterious mutations only

Case 2: presence of beneficial mutations

 unrealistic

Theorem (Gil, Hamel, Martin, R, 2017)

Case 1: Case 2:
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Consistence with Lenski’s experiment

≠
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Part B: context-dependent effect of mutations 
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B.I. Fisher’s Geometrical Model (FGM)

The FGM is a phenotype-fitness landscape model:

- Describes the relationships between (n-dimensional) phenotype and fitness

- Takes into account the existence of a unique phenotype optimum 𝒈∗ ∈ ℝ𝒏

(here, 𝒈∗ = 𝟎 for the sake of simplicity)

Assumptions:

- Each individual is characterized by a « phenotype » 𝒈 ∈ ℝ𝒏

- The relative fitnesses are 𝒎 𝒈 = −
𝒈−𝒈∗ 𝟐

𝟐
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B.I. Fisher’s Geometrical Model (FGM)

Mutation effects on fitness:
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B.I. Fisher’s Geometrical Model (FGM)

Example: Gaussian FGM. One of the most standard models of evolutionary quantitative 
genetics [Kimura 1965, Lande 1980]

Stochastic representation of the 
mutation effects on fitness:

𝑚 → 𝑚 + 𝑠
with

𝑠|𝑚 ∼ −𝑚 −
𝜆

2
𝜒2 𝑛,−

2𝑚

𝜆
.

[Martin, Lenormand 2015]

Mutation kernel 𝐽𝑚, represented by its moment generating function:

∞−
∞
𝐽𝑚 𝑠 𝑒𝑠 𝑧𝑑𝑠 = 𝑀⋆ 𝑧 𝑒𝜔 𝑧 𝑚,

with 𝑀⋆ 𝑧 =
1

1+𝜆 𝑧 𝑛/2 and 𝜔 𝑧 =
−𝜆𝑧2

1+𝜆𝑧
. [Martin, Lenormand 2015]
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B.I. FGM + Wright-Fisher microscopic model

Generation t

N individuals

Reproduction/selection

N individuals are 

sampled with 

replacement in the 

previous generation

Nb mutations/indiv. :

Mutation

Mutation effect on 
fitness:

Generation t+1

Fitness of the indiv. : Nb offsprings:

Phenotypes: 𝒈𝒊 ∈ ℝ𝑛

Fitnesses:

𝑚𝑡
𝑖 = − 𝒈𝒊 − 𝒈∗ 2/2

Mutation effect on 

phenotype:

𝒈𝒊 → 𝒈𝒊 + 𝒅𝒈𝒊
Ex:  𝒅𝒈𝒊 ∼ 𝒩(0, 𝜆 𝑰𝒏)

Context-dependent mutation kernel



.027

B.I. Numerical simulations

Context-dependent kernel

Distribution of fitness:

Context-dependent kernel

Mean fitness:
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B.II. Cumulant generating functions approach
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B.II. Cumulant generating functions approach
Effect of mutations
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B.II. Cumulant generating functions approach
Nonlocal nonlinear PDE on the expected CGF

selection mutation

Analytic 

expression 

for 𝒞(𝑡, 𝑧)

Gaussian FGM,

Clonal initial pop
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B.II. Cumulant generating functions approach
Numerical computations

Numerical solution of the PDE
vs
approximate analytic solution
vs
Individual-based stochastic simulations
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B.II. Cumulant generating functions approach
Numerical computations

Distribution: approximate analytic solution (large 𝑼/𝝀) 
vs
Individual-based stochastic simulations



.033

Main objective: to connect our formal results on CGFs with the theory of IDEs

B.III. Integro-differential approach
The equation
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B.III. Integro-differential approach
Results - existence

Theorem (Gil, Hamel, Martin, R, 2018)

• Existence of a unique time-global solution

• the CGF is well-defined

• if 

as in the Gaussian FGM, it satisfies the same equation as in part B.II 

of the talk:
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B.III. Integro-differential approach
Results – stationary states

Convergence (not proved, this is an assumption here):

Stationary equation
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B.III. Integro-differential approach
Results – stationary states

Proposition (Gil, Hamel, Martin, R, 2018)

Proposition (Gil, Hamel, Martin, R, 2018)
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B.III. Integro-differential approach
Results – stationary states

Theorem (Gil, Hamel, Martin, R, 2018)
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B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

We recall that: 

For the Gaussian FGM: 𝑀⋆ 𝑧 =
1

1+𝜆 𝑧 𝑛/2 and 𝜔 𝑧 =
−𝜆𝑧2

1+𝜆𝑧
. 



.039

B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 ≤ 2: 𝜌 = 0 and ഥ𝑚∞ > −𝑈.



.040

B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 ≤ 2: 𝜌 = 0 and ഥ𝑚∞ > −𝑈.
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B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 > 2 and 𝑈 < 𝑠𝐻
⋆ : 𝜌 > 0 and ഥ𝑚∞ = −𝑈.

Reminiscent of Pleiotropy and the preservation of perfection, Waxman and Peck, Science, 1998
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B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 > 2 and 𝑈 < 𝑠𝐻
⋆ : 𝜌 > 0 and ഥ𝑚∞ = −𝑈.

Reminiscent of Pleiotropy and the preservation of perfection, Waxman and Peck, Science, 1998
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B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 > 2 and 𝑈 > ෩𝑈: 𝜌 = 0 and ഥ𝑚∞ > −𝑈.
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B.III. Integro-differential approach
Results – stationary states, Gaussian FGM

Corollary (Gil, Hamel, Martin, R, 2018)

Gaussian FGM, 𝑛 > 2 and 𝑈 > ෩𝑈: 𝜌 = 0 and ഥ𝑚∞ > −𝑈.
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Consistence with Lenski’s experiment

≈
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Model fit

Good fit for the first 
104 generations…

… but not later
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Part C: Extension - anisotropic mutation effects



.048

Equation driving the phenotype distribution

Mutation effects on fitness:
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Mathematical results

(Hamel, Lavigne, Martin, R, 2019)
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Model fit

Isotropic:

Anisotropic:



.051
Lionel Roques 

Thanks a lot for your attention!
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A.IV. Free boundary approach - presentation

Inspired from the physics of ice melting. 

Free boundary

Equation

Free boundary: 

fitness of the best 

individual

Introduce a free boundary in the PDE:

Main objective: to build a model at a mesoscopic scale: 
- captures some features of the microscopic model (support of the solution 
remains bounded, finite speed of adaptation)
- analytically tractable PDE framework
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A.IV. Free boundary approach - TW solutions

Theorem (Garnier, Martin, R, 2017)

See [Du and Guo, 2012] for related eqs with KPP nonlinearity.
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A.IV. Free boundary approach – population size N

t1: expected time to establish a new beneficial mutation beyond the best fitness class

Define:

 consistent with a formula of Neher and Hallatschek (2013) for stochastic integro-differential eqs
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A.IV. Free boundary approach – numerical

computations

Asymptotic distribution

Free boundary approach vs stochastic simulations

Trajectory of adaptation
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A.IV. Free boundary approach – numerical computations

Distribution, free boundary

Free boundary approach vs Integro-differential approach vs stochastic simulations

Distribution, integro-differential

Mutation kernel:


