Implementation of the EM algorithm for the detection of shifts in a phylogeny.

Comparative and evolutive ecologists are interested in the distribution of quantitative traits among related species. The classical framework for these distributions consists of a random process running along the branches of a phylogenetic tree relating the species. We consider shifts in the process parameters, which reveal fast adaptation to changes of ecological niches. We show that models with shifts are not identifiable in general. Constraining the models to be parsimonious in the number of shifts partially alleviates the problem but several evolutionary scenarios can still provide the same joint distribution for the extant species. We provide a recursive algorithm to enumerate all the equivalent scenarios and to count the effectively different scenarios. We introduce an incomplete-data framework and develop a maximum likelihood estimation procedure based on the EM algorithm. Finally, we propose a model selection procedure, based on the cardinal of effective scenarios, to estimate the number of shifts and prove an oracle inequality.

Mots clés
Informations générales
Informations spécifiques
Langage(s) de développement
Langage(s) d'interface
Type de licence

Bastide Paul
Publication de référence

Informations complémentaires

Détection de saut adaptatif dans l’histoire d’un trait quantitatif.



Système d'information scientifique MIA classé par unité (UR, UMR)

Logo BIOSP     Logo MISTEA     Logo MIA Toulouse     Logo MaIAGE     Logo MIA Paris