SISIR


SISIR est un paquet dédié à la réduction de dimension dans des espaces fonctionnels.

This work focuses on the issue of variable selection in functional regression. Unlike most work in this framework, our approach does not select isolated points in the definition domain of the predictors, nor does it rely on the xpansion of the predictors in a given functional basis. It provides an approach to select full intervals made of consecutive points.

This feature improves the interpretability of the estimated coefficients and is desirable in the functional framework for which small shifts are frequent when comparing one predictor (curve) to another.

Our method is described in a semiparametric framework based on Sliced Inverse Regression (SIR). SIR is an effective method for dimension reduction of high-dimensional data which computes a linear projection of the predictors in a low-dimensional space, without loss on regression information.

We extend the approaches of variable election developed for multidimensional SIR to select intervals rather than separated evaluation points in the definition domain of the functional predictors. Different and equivalent formulations of SIR are combined in a shrinkage approach with a group-Lasso-like penalty.

Finally, a fully automated iterative procedure is also proposed to find the critical (interpretable) intervals. The approach is proved efficient on simulated and real data.


Informations générales
Suivi
Maintenu
Informations spécifiques
Langage(s) de développement
R
N° de version courante
V0.1
Date de la version courante
OS supporté
Type de licence


Porteur(s)
Unité
MIAT
Equipe
MAD
Auteur(s)
Victor Picheny
Remi Servien
Nathalie Villa-Vialaneix
Contact
nathalie.villa-vialaneix@inra.fr


Informations complémentaires

https://arxiv.org/pdf/1606.00614.pdf

 

 

Système d'information scientifique MIA classé par unité (UR, UMR)

Logo BIOSP     Logo MISTEA     Logo MIA Toulouse     Logo MaIAGE     Logo MIA Paris