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December 7, 2006

Abstract

This paper is devoted to the mathematical analysis of a spatially-
explicit harvesting model in periodic or bounded environments. Math-
ematically, this model corresponds to a parabolic equation with a
space-dependent mono-stable nonlinearity and a negative external forc-
ing term. This equation is set either in the whole space R

N , with
periodic coefficients, or in a bounded domain. Analysing the station-
ary states, we defined two main types of solutions; the “significant”
solutions, which always stay above a certain small parameter, and
the “remnant” solutions, which are always below this parameter. Us-
ing sub- and super-solution methods and the characterisation of the
first eigenvalue and first eigenfunction of some linear elliptic opera-
tors, we obtained existence and nonexistence results as well as some
results on the number of stationary solutions. We also characterised
the asymptotic behaviour of the evolution equation in function of the
forcing term amplitude. In particular, we defined some thresholds on
the forcing term below which the population density converges to a
significant state, while it converges to a remnant state whenever the
forcing term is set above the highest threshold. Besides, these bounds
were shown to be useful for studying the influence of the environ-
mental fragmentation on the long time behaviour of the population
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density, in terms of the forcing term amplitude. We present such re-
sults which were obtained numerically in the framework of stochastic
environments.

1 Introduction

Overexploitation has led to the extinction of many species [4]. Traditionally,
models of ordinary differential equations or difference equations have been
used to estimate the maximum sustainable yields from populations and to
permit a quantitative analysis of harvesting policies and management strate-
gies [14]. Occulting age or stage structures as well as delay mechanisms,
which will not be treated by the present paper, the ODEs models are gener-
ally of the following type:

dU

dt
= F (t, U) − Y (t, U), (1.1)

where U is the population biomass at time t, F (t, U) is the growth function
and Y (t, U) corresponds to the harvest function. In these models, the most
commonly used growth function is logistic, with F (t, U) = U(µ − νU) ([5],
[19], [29]), where µ > 0 is the intrinsic growth rate of the population and
ν > 0 models its susceptibility to crowding.

Different harvesting strategies Y (t, U) have been considered in the litera-
ture, and are used in practical resource managing. A very common one is the
constant-yield harvesting strategy, where a constant number of individuals
are removed per unit of time: Y (t, U) = δ, with δ a positive constant. This
harvesting function naturally appears when a quota is set on the harvesters
([25], [26], [32]). Another frequently used harvesting strategy is the propor-
tional harvesting strategy (also called constant effort harvesting), where a
constant proportion of the population is removed. It leads to an harvesting
function of the type Y (t, U) = δU .

From the point of view of spatially dependent reaction-diffusion models,
much less seems to be achieved in this spirit, even if some recent related
works have raised some aspects of the question ([18], [20], [23]). The aim of
this paper is to perform an analysis of some harvesting models in the spirit
of standard works which used ODEs, but within the framework of reaction-
diffusion equations; it permits among others things, to consider the effect of
environmental heterogeneity for such questions.
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In that respect, before entering into the precise statements of the problem
here considered, we need to recall some generalities on reaction diffusion
models. One of the famous reaction-diffusion model is the one of Fisher [13]
and Kolmogorov, Petrovsky and Piskunov [17], which has been widely used to
model spatial propagation or spreading of biological species in homogeneous
environments (see the books [19], [22] and [34] for review). The corresponding
equation is

ut = D∇2u + u(µ − νu), (1.2)

where u = u(t, x) is the population density at time t and space position x,
D is the diffusion coefficient, and µ and ν still correspond to the constant
intrinsic growth rate and susceptibility to crowing coefficients. More recently,
this model has been extended to heterogeneous environments by Shigesada
et al. [31]. The corresponding model (called SKT-model in the sequel) is of
the following type,

ut = D∇2u + u(µ(x) − ν(x)u). (1.3)

The coefficients µ(x) and ν(x) now depend on the space variable x, which
can therefore include some effects of environmental heterogeneity. This model
has revealed that the heterogeneous character of the environment plays an
essential role on species persistence, in the sense that for different spatial
configurations of the environment, a population can extinct or survive, de-
pending on the arrangements of the habitat ([7], [11], [30]).

As mentioned above, the combination of an harvesting model with a
Fisher-KPP model of population dynamics, leading to an equation of the form
ut = D∇2u+u(µ−νu)−Y (t, x, u) has been considered in some recent papers,
with a spatially dependent proportional harvesting term Y (x, u) = q(x)u
in [20] [23], and a spatially dependent and time-constant harvesting term
Y (x) = h(x) in [18]. In these papers, the models were considered in bounded
domains with Dirichlet (lethal) boundary conditions.

We study here a model of population dynamics of the SKT-type, with
a spatially dependent harvesting term Y (x, u). We then obtain a reaction-
diffusion model of the following type:

ut = D∇2u + u(µ(x) − ν(x)u) − Y (x, u). (1.4)

We mainly focus on a “quasi-constant-yield” case, where the harvesting term
only depends on u for very low population densities (guaranteeing the non-
negativity of u), while it is of constant yield type for large enough values of
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u. We consider two types of domains and of boundary conditions. In the
first case, the domain is bounded with Neumann (reflective) boundary con-
ditions; this framework is often the more realistic one for modelling species
which cannot cross the domain boundary. In the second case, we consider
the model (1.4) in the whole space R

N with periodic coefficients. This last
situation, though being technically more complex, is useful for instance for
studying spreading phenomena ([6], [8]), and for studying the effects of en-
vironmental fragmentation, independently of the boundary effects. Lastly,
note that the effects of variability in time of the harvesting function will be
postponed in a forthcoming publication [12]. We describe now the skeleton
of our paper.

In § 2, we set a firm mathematical basis for this model. We prove existence
and nonexistence results for the equilibrium equations as well as some results
on the number of possible stationary states. We also establish the asymptotic
behaviour of the solutions in large times. In § 3, we illustrate the practical
usefulness of the results of § 2, by studying the effects of the amplitude of
the harvesting term on the population density in terms of environmental
fragmentation. Lastly, in § 4, we give some new results for the proportional
harvesting case Y (x, u) = q(x)u.

2 Mathematical analysis of a quasi-constant-

yield spatially-explicit harvesting model

2.1 Formulation of the model

The model we are interested in this paper, is essentially an externally per-
turbed SKT-model:

ut = D∇2u + u(µ(x) − ν(x)u) − δh(x)ρε(u), (t, x) ∈ R+ × Ω. (2.5)

The function u = u(t, x) denotes the population density at time t and space
position x. The coefficient D, assumed to be positive, denotes the diffusion
coefficient. The questions concerning other assumptions on the diffusion part
of (2.5) and related consequences of our analysis, will be discussed in the
conclusion. The functions µ(x) and ν(x) respectively stand for the spatially
dependent intrinsic growth rate of the population, and for its susceptibility to
crowding. Two different types of domains Ω are considered: either Ω = R

N
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or Ω is a smooth bounded and connected domain of R
N (N ≥ 1). We qualify

the first case as the periodic case, and the second one as the bounded case. In
the periodic case, we assume that the functions µ(x), ν(x) and h(x) depend
on the space variables in a periodic fashion. For that, let L = (L1, . . . , LN ) ∈
(0, +∞)N . We recall the following definition:

Definition 2.1 A function g is said to be L-periodic if g(x + k) = g(x) for
all x = (x1, · · · , xN) ∈ R

N and k ∈ L1Z × · · · × LNZ.

Thus we assume, in the periodic case, that µ, ν and h are L-periodic. In the

bounded case we assume that Neumann boundary conditions hold:
∂u

∂n
= 0

on ∂Ω, where n is the outward unit normal to ∂Ω. The period cell C is
defined by

C := (0, L1) × · · · × (0, LN),

in the periodic case, and in the bounded case, we set

C := Ω,

for the sake of simplicity of some forthcoming statements.
We assume furthermore that the functions µ and ν satisfy

µ, ν ∈ L∞(Ω) and ∃ ν , ν ∈ R s.t. 0 < ν < ν(x) < ν, ∀ x ∈ Ω. (2.6)

For µ and ν fixed, regions with higher values of µ(x) and lower values of
ν(x) will be qualified as more favourable, while, on the other hand, regions
with lower µ(x) and higher ν(x) values will be considered as less favourable
or equivalently as more hostile.

We now describe and explain our choice for the last term in (2.5): δh(x)ρε(u).
It corresponds to a quasi-constant-yield harvesting term. Indeed, the func-
tion ρε defines a “regularised Heaviside function”: it is a C1(R) nondecreasing
function such that

ρε(s) = 0 for all s ≤ 0 and ρε(s) = 1 for all s ≥ ε,

where ε is a non-negative parameter. Such a function lead to consider two
different types of yield: constant yield in time when u ≥ ε, and yield de-
pending almost proportionally on the population density u when u < ε. In
the sequel, the parameter ε will be taken to be very small. As we prove
in the next sections, there are many situations where the solutions of the
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model always remain larger than ε. For these reasons, we qualify our model
as quasi-constant-yield harvesting SKT-model, the “dominant” regime be-
ing the constant-yield one. Note that the function ρε guarantees the non-
negativity of the solutions of (2.5), and from a biological viewpoint, ε can cor-
respond to a threshold bellow which harvesting is progressively abandoned.
Considering constant-yield harvesting functions without this threshold value
would be unrealistic since it would lead to harvest on zero-populations.

Finally, we specify that δ ≥ 0 and that h is a function in L∞(Ω) such
that

there exists α > 0 with α < h(x) < 1 for all x ∈ Ω. (2.7)

We will call h the harvesting scalar field, and δ will designate by this way
the amplitude of this field.

Before starting our analysis of this model, we consider the no-harvesting
case, i.e. when δ = 0, for recalling the main results obtained in this case
and in order to introduce some elements of analysis and comparison with the
quasi-constant-yield harvesting SKT model.

2.2 The no-harvesting case

When δ = 0 in equation (2.5), our model reduces to the SKT model of
population dynamics in heterogeneous environments described by equation
(1.3). The behaviour of the solutions of this model has been extensively
studied in [7] and [8]. In this section, we recall some results that will be
useful in the analysis of the general case of (2.5).

These results are formulated in terms of first (smallest) eigenvalue λ1 of
the following Schrödinger operator Lµ defined by

Lµφ := −D∇2 − µ(x)I,

with either periodic boundary conditions (on the period cell C) in the periodic
case or Neumann boundary conditions in the the bounded case. This operator
is the linearized one of the full model around the trivial solution. Recall that
λ1 is defined as the unique real number such that there exists a function
φ > 0, the first eigenfunction, which satisfies

{
−D∇2φ − µ(x)φ = λ1φ in C,

φ > 0 in C, ‖φ‖∞ = 1,
(2.8)
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with either periodic or Neumann boundary conditions, depending on Ω. The
function φ is uniquely defined by (2.8) ([6]), and belongs to W 2,τ (C) for all
1 ≤ τ < ∞ (see [1] and [2] for further details). We set

φ := min
x∈C

φ(x).

We recall that a stationary state p of equation (1.3) satisfy the equation,

−D∇2p = p(µ(x) − ν(x)p). (2.9)

The following result on the stationary states of (2.9) is proved in [7].

Theorem 2.2 (i) If λ1 < 0, the equation (2.9) admits a unique nonnegative,
nontrivial and bounded solution, p0.

(ii) If λ1 ≥ 0, the only nonnegative and bounded solution of (2.9) is 0.

Moreover, in the periodic case the solution p0 is L-periodic. Throughout this
paper, p0 always denotes to the stationary solution given by Theorem 2.2,
Part (i).

In order to emphasise that this solution can be “far” from 0 (cf. Definition
2.5, and the commentary following (2.12) for a precise statement), we give a
lower bound for p0, which will be essential in particular for the study of the
asymptotic behaviour (cf. Theorem 2.11).

Proposition 2.3 Assume that λ1 < 0, then p0 ≥
−λ1φ

ν
in Ω.

Note: For the sake of readability, the proofs of the results of § 2 are
postponed to § 2.5.

The asymptotic behaviour of the solutions of (1.3) is also detailed in [7].
In this particular case δ = 0, they show that λ1 < 0 is a necessary and
sufficient condition for species persistence, whatever the initial population
u0 is:

Theorem 2.4 Let u0 be an arbitrary bounded and continuous function in Ω
such that u0 ≥ 0, u0 6≡ 0. Let u(t, x) be the solution of (1.3), with initial
data u(0, x) = u0(x).

(i) If λ1 < 0, then u(t, x) → p0(x) in W
2,τ
loc (Ω), for all 1 ≤ τ < ∞, as

t → +∞ (uniformly in the bounded case).
(ii) If λ1 ≥ 0, then u(t, x) → 0 uniformly in Ω as t → +∞.
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The situation (i) corresponds to persistence, while in the case (ii) the pop-
ulation tends to extinction. In the sequel, unless otherwise specified, we
therefore always assume that λ1 < 0, so that the population survives, at
least when there is no harvesting. We are now in position to start our main
analysis of steady states and related asymptotic behaviour of solutions of
(2.5).

2.3 Stationary states analysis

As it is classically demonstrated in finite dimensional dynamical system the-
ory and many problems in the infinite dimensional setting (see e.g. [33]), and
in particular for semi-linear parabolic equations, the asymptotic behaviour
of the solutions of (2.5) is governed by the steady states and their relative
stability properties. In that respect, we study in this section the positive
stationary solutions of (2.5), namely the solutions of

−D∇2pδ = pδ(µ(x) − ν(x)pδ) − δh(x)ρε(u), x ∈ Ω. (2.10)

No boundary conditions are imposed in the periodic case, while we again
assume Neumann boundary conditions in the bounded case. When needed,
we may note (2.10,δ) instead of (2.10).

Note that, provided pδ ≥ ε in Ω, pδ is equivalently a solution of the
simpler equation

−D∇2pδ = pδ(µ(x) − ν(x)pδ) − δh(x), x ∈ Ω. (2.11)

This last equation has been analysed in the case of Dirichlet boundary con-
ditions in [23], in the particular case of constant coefficients µ and ν.

In the following analysis, two main types of solutions of (2.10) will be
found. Hence we introduce the following definition.

Definition 2.5 Set ε0 :=
ε

φ
≥ ε. We say that a nonnegative function σ is

remnant whenever max
C

σ < ε0, whereas it is significant if it is a bounded

function satisfying min
C

σ ≥ ε0.

Since ε0 is assumed to be small in our model, the remnant solutions
of (2.10) correspond to very low population densities. On the other hand,
significant solutions are everywhere above ε0. In particular, a constant yield is
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guaranteed in that case. Stationary solutions which are not remnant neither
significant may exist, as outlined in the next theorems. However, as we will
see while studying the long-time behaviour of the solutions of the model
(2.5), they are of less importance in our study (cf. Theorem 2.11 and § 3).

Note: The threshold ε0 is different from ε in general. We had to define
remnant and significant functions using ε0 for technical reasons (see the proof
of Theorem 2.10, part (ii), equation (2.28)). Since ε is assumed to be very
small, it has no implication on the biological interpretation of our results.
Moreover, most of our results still work when ε0 is replaced by ε.

In the sequel, we always assume that that

ε0 <
−λ1φ

4ν
, (2.12)

so that, in particular, from Proposition 2.3, the solution p0 of (2.9) is signif-
icant.

We begin by proving that there exists a threshold δ∗ such that, if the
amplitude δ is below δ∗, the equation (2.10) admits significant solutions,
while it does not in the other case.

Theorem 2.6 Assume that λ1 < 0, then there exists δ∗ ≥ 0 such that
(i) if δ ≤ δ∗ there exists a positive significant solution pδ ≤ p0 of (2.10)

and (2.11).
(ii) if δ > δ∗, there is no positive significant solution of (2.10).
(iii) If λ1 ≥ 0, there is no positive bounded solution of (2.10), whatever δ

is.
(iv) If λ1 < 0 and δ > δ∗, or if λ1 ≥ 0, there is no positive bounded

solution of (2.11).

Under stronger hypotheses, we are able to prove that (2.10) admits at
most two significant solutions. In order to state this result, we need some
definitions. Let G be the space defined in the periodic case by

G := H1
per =

{
ϕ ∈ H1

loc(R
N) such that ϕ is L-periodic

}
, (2.13)

and by
G := H1(C), (2.14)
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in the bounded case. Let us define the standard Rayleigh quotient, for all
φ ∈ G, φ 6≡ 0, and for all σ ∈ L∞(C),

Rσ(φ) :=

∫

C

|∇φ|2 − σ(x)φ2

∫

C

φ2
. (2.15)

Then, the second smallest eigenvalue λ2 of the operator Lµ can be computed
thanks to the following variational formula:

λ2 = min
Ek⊂G,dim(Ek)=2

max
φ∈Ek, φ 6≡0

Rµ(φ). (2.16)

We are now in position to state the following theorem:

Theorem 2.7 Assume that λ1 < 0 ≤ λ2, then, in the bounded case, the
equation (2.10)admits at most two significant solutions. In the periodic case,
(2.10) admits at most two L′-periodic significant solutions for all L′ ∈ (0, +∞)N .
Moreover, under these hypotheses, if two solutions p1,δ and p2,δ exist, they are
ordered in the sense that, for instance, p1,δ < p2,δ in Ω.

Note: Similar methods also allow us to assess a result on the number of
solutions of equation (2.11). Indeed, if λ1 < 0 ≤ λ2, then, in the bounded
case, we obtain that (2.11) admits at most two non-negative bounded (and
periodic in the periodic case) solutions. If these solutions exist, they are
ordered.

In the periodic case, Theorem 2.7 also gives some information on the
periodicity of the significant solutions of (2.10), which are actually found to
have the same periodicity as the coefficients of the equation (2.10):

Corollary 2.8 Assume that λ1 < 0 ≤ λ2. Then, in the periodic case, the
significant periodic solutions of (2.10) are L-periodic.

The fact that λ1 < 0 is directly related to the instability of the trivial
solution in the SKT model. The additional condition λ2 ≥ 0 in this theorem
is linked to the existence of a stable manifold or centre manifold of the steady
state 0 of the SKT model, in some appropriate functional spaces (see [33]).
Therefore the assumptions of Theorem 2.7, and the Krein Rutmann theory,
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allow us to conclude that under these assumptions, the unstable manifold
of 0 is of dimension equal to one or equivalently the stable manifold is of
codimension one. Such results on multiplicity of solutions of elliptic nonlinear
equations with a source term have been investigated in the past, and are
known nowadays as Ambrosetti-problem type. These results also involve
manifolds of codimension 1 (but in the functional space of forcing), and first
and second eigenvalues (but for the opposite of the Laplacian only) (see [21]
for a survey of these results).

At all events, our Theorem 2.7 relies on the assumption that λ2 ≥ 0,
thus in order to get a better idea of when λ2 may become positive, and how
its sign depends on µ, we compute a lower bound for λ2 in the periodic or
bounded case.

Proposition 2.9 (i) In the periodic case,

λ2(C) ≥ D

(
π

Ld

)2

− max
C

µ,

where Ld denotes the length of the longest diagonal of C.
(ii) In the bounded case, if C is a convex domain with diameter d,

λ2(C) ≥ D
(π

d

)2

− max
C

µ.

If C is not assumed to be convex, we have

λ2(C) ≥ D
( π

d′

)2

− max
C

µ,

where d′ is the diameter of the smallest ball containing C.

For instance, when C = [0, 1] × [0, 1], we have d =
√

2; thus, for D = 1
and max

C
µ = 4, we get λ2 > 0.9. However, this lower bound is far from

being optimal. Indeed, in all our computations of § 3, and under the same
hypothesis on C and D, we always had λ2 > 0, while max

C
µ = 10. More

precise lower bounds for λ2 can be found in [10]; however, these bounds are
also more sensitive to the geometry of the domain, and thus less general, and
are therefore not detailed here.

We now introduce an important result for studying the effect of the envi-
ronmental heterogeneity on the harvesting from a quantitative point of view.
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One of the main drawbacks of Theorem 2.6 is that it gives no computable
bounds of δ∗; and obtaining information on the value of δ∗ is precious for
more inclined ecological questions such that the study of the relationships
between δ∗ and the environmental heterogeneities, which are, we recall it,
included in the coefficients µ(x) and ν(x). In the next theorem we are able
to produce some estimates that allows us to answer in part to this important
practical question (cf. also § 3 for an illustration of this theorem).

For that, let us define

δ1 :=
λ2

1φ

ν(1 + φ)2
and δ2 :=

λ2
1

4αν
. (2.17)

Note that δ1 and δ2 do not depend on δ and ε.

Theorem 2.10 (i) If λ1 < 0 and δ ≤ δ1, then there exists a positive signif-

icant solution pδ of (2.10) such that pδ ≥ − λ1φ

ν(1 + φ)
. In the periodic case,

there exists a L-periodic solution.
(ii) If λ1 < 0 and δ > δ2, the only possible positive bounded solutions of

(2.10) are remnant.
(iii) If λ1 < 0 and δ > δ2, there is no positive bounded solution of (2.11).

The lower bound of Part (i), for pδ, does not depend on ε. Thus, there is a
clear distinction between the remnant and significant solutions. Note that,
of course, δ1 ≤ δ2.

Related to λ1 and φ, the formulae (2.17) allow numerical evaluations. An
important quantity to compute is the size of the gap δ2 − δ1, and its fluctua-
tions in terms of environmental configurations. This question is addressed in
§ 3 through a numerical study, exploiting the formulae given by (2.17) and
some recent results on stochastic modelling of heterogeneous landscapes [28].

2.4 Asymptotic behaviour

In this section, we prove that the quantity δ∗ in fact corresponds to a max-
imum sustainable yield, in the sense that when δ is smaller than δ∗, the
population density u(t, x) converges to a significant stationary state of (2.5)
as t → ∞, whereas when δ is larger than δ∗, the population density converges
to a stationary state which is not significant. In fact, when δ is larger than
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the quantity δ2 defined by (2.17) we even prove that the population converges
to a remnant stationary state of (2.5).

We consider here that the harvesting starts on a stabilised population
governed by the standard SKT-model with δ = 0. From Theorem 2.4, this
means that we study the behaviour of the solutions u(t, x) of our model (2.5),
starting with the initial datum u(0, x) = p0(x). Since we have assumed that
λ1 < 0, it follows from Theorem 2.2, Proposition 2.3 and (2.12) that p0 is
well defined and significant.

Let us describe, with the following theorem, the large time behaviour of
the population density.

Theorem 2.11 Let u(t, x) be the solution of (2.5) with initial datum u(0, x) =
p0(x). Then u is non-increasing in t and,

(i) if δ ≤ δ∗, u(t, x) → pδ(x) uniformly in Ω as t → +∞, where pδ is
the maximal significant solution of (2.10). Moreover pδ is L-periodic in the
periodic case;

(ii) if δ > δ∗, then the function u(t, ·) converges uniformly in Ω to a
solution of (2.10) which is not significant;

(iii) if δ > δ2, the function u(t, ·) converges uniformly in Ω to a remnant
solution of (2.10).

Note: If, in addition, we assume that λ2 ≥ 0, then Theorem 2.7 says
that, whenever δ ≤ δ∗, the equation (2.5) admits at most two significant
stationary states (which are periodic stationary states in the periodic case).
In that case, the stationary state pδ selected at large times is the higher one.
If we do not assume that λ2 ≥ 0, this stationary state can still be defined
as “the maximal one” that can be constructed by a sub- and super- solution
method (cf. [3]).

From the above theorem, we observe that, when δ ≤ δ∗, the solution
u(t, x) of (2.5), with initial data p0, remains significant for all times t ≥ 0.
This guarantees a constant yield in time, and justifies the name of the model.

Even if it is ecologically relevant, we can argue that such a result seems
limited on a mathematical standpoint since we describe the asymptotic be-
haviour only for a particular initial datum. In fact, similar results can be
obtained for a wider class of initial data. Indeed, with similar methods,
the convergence of u(t, x) to a significant solution of (2.10) can be obtained
whenever δ ≤ δ∗ for all bounded and continuous initial data u(0, x) which
are larger than the smallest significant solution of (2.10). In particular, when
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u(0, x) is larger than the maximal significant solution of (2.10), u(t, x) con-
verges to this maximal significant solution as t → +∞. A more detailed
analysis of the basin of attraction related to the maximal significant solution
will be further investigated in the forthcoming paper [12].

Returning to the question pointed out at the end of the preceding section,
on the size of the gap δ2 − δ1, we can now assert that this question is in fact
related to the practical determination of the maximum sustainable yield. As
we will see in § 3, the thickness of the interval (δ1, δ2) can be very narrow
in certain situations. In those cases, the numerical computation of δ1 and
δ2 therefore gives a sharp localisation of the maximum sustainable quota
δ∗ ∈ [δ1, δ2], that can be of non negligible ecological interest.

2.5 Proofs of the results of § 2

Proof of Proposition 2.3: Let φ be defined by (2.8), with the appropriate

boundary conditions. Set κ0 :=
−λ1

ν
. Then the function κ0φ satisfies

−D∇2(κ0φ) − µ(x)κ0φ + ν(x)(κ0φ)2 = λ1κ0φ + ν(x)(κ0φ)2,

= κ0φ(λ1 + ν(x)κ0φ) ≤ 0.

Thus κ0φ is a subsolution of the equation (2.9) satisfied by p0. Since for M ∈
R large enough, M is a supersolution of (2.9), it follows from the uniqueness

of the positive bounded solution p0 of (2.9) that p0 ≥ κ0φ ≥
−λ1φ

ν
. �

Before proving Theorem 2.6, we begin with the following lemma.

Lemma 2.12 For all δ > 0, if pδ is a nonnegative bounded solution of (2.10),
then pδ ≤ p0.

Proof of Lemma 2.12: Assume that there exists x0 ∈ Ω such that pδ(x0) >

p0(x0). The function pδ satisfies

−D∇2pδ − pδ(µ(x) − ν(x)pδ) = −δh(x)ρε(pδ) ≤ 0,

thus pδ is a subsolution of the equation (2.9) satisfied by p0. Since for M ∈ R

large enough, M is a supersolution of (2.9) we can apply a classic iterative
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method to infer the existence of a solution p′0 of (2.9) (with Neumann bound-
ary conditions in the bounded case since both pδ and M satisfy Neumann
boundary conditions) such that pδ ≤ p′0 ≤ M . In particular p′0(x0) > p0(x0),
which is in contradiction with the uniqueness of the positive bounded solution
of (2.9). �

Proof of Theorem 2.6: Let us define

δ∗ := sup{δ ≥ 0, (2.10) admits a significant solution}.

For δ = 0, we know from Proposition 2.3 that p0 is a significant solution of
(2.10). Moreover, for δ large enough, the nonexistence of significant solu-
tions of (2.10) is a direct consequence of the maximum principle (it is also a
consequence of the proof of Theorem 2.10, Part (ii)). Thus δ∗ is well defined
and bounded.

Assume that δ∗ > 0, and let us prove that equation (2.10,δ∗) admits a
significant solution. By definition of δ∗, there exists a sequence (pδk

)k∈N of
solutions of (2.10,δk) with 0 < δk ≤ δ∗ and δk → δ∗ as k → +∞. Moreover,
from Lemma 2.12, ε0 ≤ pδk

≤ p0 for all k ≥ 0. Thus, from standard elliptic
estimates and Sobolev injections, the sequence (pδk

)k∈N converges (up to the
extraction of some subsequence) in W

2,τ
loc , for all 1 ≤ τ < ∞, to a significant

solution pδ∗ of (2.10,δ∗).
Now, let 0 ≤ δ < δ∗. Then

−D∇2pδ∗ − pδ∗(µ(x) − ν(x)pδ∗) + δh(x) = (δ − δ∗)h(x) < 0,

thus pδ∗ is a subsolution of (2.10,δ). Since p0 is a supersolution of (2.10,δ),
a classical iterative method gives the existence of a significant solution pδ of
(2.10,δ) (with Neumann boundary conditions in the bounded case since both
pδ and M satisfy Neumann boundary conditions). This concludes the proof
of Theorem 2.6. �

Proof of Theorem 2.7: As a preliminary, we prove that if two solution
exist, then they cannot intersect. Let p1,δ and p2,δ be two significant solutions
of (2.10). In the bounded case, we assume that p1,δ and p2,δ satisfy Neumann
boundary conditions. In the periodic case, we assume that there exists L′ ∈
(0, +∞)N such that p1,δ and p2,δ are L′-periodic, we then denote the period
cell by C ′. Let us set qδ := p2,δ − p1,δ. Then qδ verifies

−D∇2qδ − [µ(x) − ν(x)(p1,δ + p2,δ)]qδ = 0, (2.18)
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thus, setting ρ(x) := µ(x) − ν(x)(p1,δ + p2,δ), we obtain

−D∇2qδ − ρ(x)qδ = 0, (2.19)

with the same boundary conditions that were satisfied by p1,δ and p2,δ.

Let λ̂1 and λ̂2 be respectively the first and second eigenvalues of the
operator Lρ := −D∇2 −ρI. Let Rσ(φ), be defined by equation (2.15). Since
ρ(x) < µ(x) − 2νε0 for all x ∈ Ω, we get

Rρ(φ) ≥ Rµ(φ) + 2νε0,

for all φ ∈ G′, where G′ := H1(Ω) in the bounded case and

G′ := H1
per =

{
ϕ ∈ H1

loc(R
N) such that ϕ is L′-periodic

}
,

in the periodic case. Thus, by the classical min-max formula (2.16), it follows
that

λ̂2 ≥ λ2 + 2νε0 > 0. (2.20)

Furthermore, from (2.19), 0 is an eigenvalue of the operator Lρ. Thus, (2.20)

implies that λ̂1 = 0. As a consequence, qδ is a principal eigenfunction of the
operator Lρ. The principal eigenfunction characterisation thus implies that
qδ has a constant sign. Finally, we get that p1,δ and p2,δ do not intersect each
other.

Let us now prove that equation (2.10) admits at most two significant
solutions. Arguing by contradiction, we assume that there exist three sig-
nificant (L′-periodic in the periodic case, for some L′ ∈ (0, +∞)N) solutions
p1,δ, p2,δ, and p3,δ of (2.10). From the above result, we may assume, without
loss of generality, that p3,δ > p2,δ > p1,δ > ε0. Set q2,1 := p2,δ − p1,δ and
q3,2 := p3,δ − p2,δ, then these functions satisfy the equations

−D∇2q2,1 − ρ2,1(x)q2,1 = 0, (2.21)

and
−D∇2q3,2 − ρ3,2(x)q3,2 = 0, (2.22)

with ρ2,1 := µ(x) − ν(x)(p1,δ + p2,δ) and ρ3,2 := µ(x) − ν(x)(p2,δ + p3,δ).
Moreover, q2,1 > 0 and q3,2 > 0. Thus 0 is the first eigenvalue of the operators
Lρ2,1

:= −D∇2 − ρ2,1I and Lρ3,2
:= −D∇2 − ρ3,2I with either Neumann or

L′-periodic boundary conditions.
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From the strong maximum principle (together with Hopf’s Lemma in the
bounded case, and using the L′-periodicity of q3,2 in the periodic case), we
obtain the existence of θ > 0 such that q3,2 > θ. Since the operator Lρ3,2

is

self-adjoint, we have the following formula for its first eigenvalue λ̂1

3,2
,

λ̂1

3,2
= min

φ∈G′

Rρ3,2
(φ),

thus

λ̂1

3,2
= min

φ∈G′

{
Rρ2,1

(φ) +

∫
C

ν(p3,δ − p1,δ)φ
2

∫
C

φ2

}
≥ min

φ∈G′

{
Rρ2,1

(φ)
}

+ νθ,

≥ λ̂1

2,1
+ νθ,

where λ̂1

2,1
is the first eigenvalue of the operator Lρ2,1

. Since the first eigenval-
ues of the operators Lρ2,1

and Lρ3,2
are both 0, we deduce that 0 ≥ 0+νθ > 0,

hence a contradiction. Theorem 2.7 is proved. �

Proof of Corollary 2.8: Let pδ be a significant L′-periodic solution of
(2.10), and let k ∈

∏N

i=1 LiZ. From the L-periodicity of the equation (2.10),
pδ(·+k) is also a solution of (2.10). By periodicity of pδ, the functions pδ and
pδ(·+k) intersect each other. Thus, from Theorem 2.7, since pδ and pδ(·+k)
are both L′-periodic, pδ ≡ pδ(· + k). Therefore, pδ is a L-periodic function.
�

Proof of Proposition 2.9: In the bounded case, when C is a convex domain
with diameter d, it was proved in [24] that the second Neumann eigenvalue

of Laplace operator ∇2 was smaller than
(π

d

)2

. Thus, the second eigenvalue

of L0 = D∇2 on C is smaller than D
(π

d

)2

. Using formula (2.16), we obtain

that the second eigenvalue of Lµ in the bounded case satisfies λ2 ≥ D
(π

d

)2

−
max

C
µ. Since H1

per(C) is a subset of H1(C), it also follows from (2.16) that

the second eigenvalue in the periodic case is larger than in the bounded case.

Thus, in both cases λ2 ≥ D
(π

d

)2

− max
C

µ. In the periodic case d is the

length of the longest diagonal of the period cell C. This proves the point (i)
and the first part of (ii).
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In the bounded case, when C is no more assumed to be convex, there
exists a ball Bd′ , of diameter d′, such that C ⊂ Bd′ . The formula (2.16)
then implies that the second eigenvalue of the operator Lµ on the set Bd′ is
smaller than on the set C. This concludes the proof of Proposition 2.9. �

Proof of Theorem 2.10, Part (i): Let λ1 and φ be defined by (2.8), and let κ

be a nonnegative real number such that κ > ε0. Then we have

−D∇2(κφ) − κφ(µ(x) − κφν(x)) + δh(x)ρε(κφ) ≤ λ1κφ + κ2φ2ν(x) + δ

≤ κφ(λ1 + κφν(x)) + δ

≤ max
τ∈I

{τ(λ1 + τν)} + δ,

(2.23)
where I = {κφ(x), x ∈ C}. Setting g(τ) := τ(λ1 + τν), since ‖φ‖∞ = 1,
and since g is a convex function, it follows from (2.23) that

−D∇2(κφ) − κφ(µ(x) − κφν(x)) + δh(x)ρε(κφ) ≤ max{g(κ), g(κφ)} + δ.

(2.24)

Let us take κ0 be such that g(κ0) = g(κ0φ), namely κ0 = − λ1

ν(1 + φ)
(note

that κ0φ > ε). We get

−D∇2(κ0φ) − κ0φ(µ(x) − κ0φν(x)) + δh(x) ≤ −
λ2

1φ

ν(1 + φ)2
+ δ ≤ 0, (2.25)

from the hypothesis on δ of Theorem 2.10, Part (i). Therefore, κ0φ is a sub-
solution of (2.10) with either L-periodic or Neumann boundary conditions.
Moreover, if M is a large enough constant, M is a supersolution of (2.10)
with L-periodic or Neumann boundary conditions. Thus, it follows from
a classical iterative method that there exists a solution pδ of (2.10), with
the required boundary conditions, and which satisfies κ0φ ≤ pδ ≤ M in Ω.
Moreover, in the periodic case, since κ0φ and M are L-periodic and since the
equation (2.10) is also L-periodic, it follows that pδ is L-periodic. Theorem
2.10, Part (i) is proved. �

Proof of Theorem 2.10, Parts (ii), (iii) and (iv): Assume that λ1 < 0, δ > δ2

and that there exists a positive bounded solution pδ of (2.10) which is not
remnant, i.e.

there exists x0 with pδ(x0) ≥ ε0. (2.26)
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Since φ is bounded from below away from 0 and pδ is bounded, we can define

γ∗ = inf {γ > 0, γφ > pδ in Ω} ≥ 0. (2.27)

As ‖φ‖∞=1, it follows from (2.26) that γ∗ ≥ ε0. Thus,

γ∗φ ≥ ε0φ = ε. (2.28)

Therefore we have the following inequality,

−D∇2(γ∗φ)−γ∗φ(µ(x)−γ∗φν(x))+δh(x)ρε(γ
∗φ) ≥ γ∗φ(λ1+γ∗φν(x))+δα,

on Ω, and, since if λ1 < 0 and δ > δ2,

−D∇2(γ∗φ)−γ∗φ(µ(x)−γ∗φν(x))+δh(x)ρε(γ
∗φ) ≥ −λ2

1

4ν
+ δα > 0, (2.29)

on Ω. Therefore, γ∗φ is a supersolution of (2.10). Set z := γ∗φ − pδ. Then
z ≥ 0, and there exists a sequence (xn)n∈N in Ω such that z(xn) → 0 as
n → +∞.

In the bounded case, up to the extraction of some subsequence, xn →
x ∈ Ω as n → +∞. By continuity, z(x) = 0. Moreover, subtracting (2.10)
to (2.29), we get

−D∇2z − b(x)z > 0 in Ω, (2.30)

for some bounded function b. Using the strong elliptic maximum principle
and the Hopf Lemma, we obtain z ≡ 0, thus γ∗φ ≡ pδ is a positive solution
of (2.10), which in contradiction with (2.29).

In the periodic case, we must also consider the situation where the se-
quence (xn)n∈N is not bounded. Let (xn) ∈ C be such that xn−xn ∈ ∏N

i=1 LiZ.
Up to the extraction of some subsequence, we can assume that there exists
x∞ ∈ C such that xn → x∞ as n → +∞. Set φn(x) = φ(x + xn) and
pδ,n(x) = pδ(x+xn). From standard elliptic estimates and Sobolev injections,
it follows that (up to the extraction of some subsequence) pδ,n converge in
W

2,τ
loc , for all 1 ≤ τ < ∞, to a function pδ,∞ satisfying

−∇2(Dpδ,∞) − pδ,∞(µ(x + x∞) − pδ,∞ν(x + x∞)) + δh(x + x∞)ρε(pδ,∞) = 0,

in R
N , while γ∗φn converges to γ∗φ∞ := γ∗φ(· + x∞), and

−∇2(Dγ∗φ∞)−γ∗φ∞(µ(x+x∞)−γ∗φ∞ν(x+x∞))+δh(x+x∞)ρε(γ
∗φ∞) > 0,
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in R
N . Let us set z∞(x) := γ∗φ∞(x)−pδ,∞(x). Then z∞(x) = limn→+∞ z(x+

xn), therefore z∞ ≥ 0 and z∞(0) = 0. Moreover, there exists a bounded
function b∞ such that

−D∇2z∞ − b∞z∞ > 0 in R
N . (2.31)

It then follows from the strong maximum principle that z∞ ≡ 0 and we again
obtain a contradiction. Finally, we necessarily have pδ ≤ ε0, and the proof of
Theorem 2.10, Part (ii) is complete. Parts (iii) and (iv) can be proved with
similar arguments. �

Proof of Theorem 2.11, Part (i): Assume that δ ≤ δ∗. Let pδ be the unique
maximal significant solution defined in the proof of Theorem 2.10, Part (i).
Then, from Lemma 2.12,

pδ(x) ≤ p0(x) = u(0, x) ∀ x ∈ Ω, (2.32)

which implies
pδ(x) ≤ u(t, x) in R+ × Ω, (2.33)

since pδ is a stationary solution of (2.5). Moreover, since p0 is a supersolution
of (2.10), u is nonincreasing in time t, and standard parabolic estimates imply
that u converges in W

2,τ
loc (Ω), for all 1 ≤ τ < ∞, to a bounded stationary

solution u∞ of (2.5). Furthermore, from (2.33) we deduce that pδ ≤ u∞ ≤ p0.
Since pδ is the maximal positive solution of (2.10), it follows that u∞ ≡ pδ.
Moreover, in the periodic case, since p0 and the equation (2.5) are L-periodic,
u(t, x) is also L-periodic in x. Therefore the convergence is uniform in Ω. Part
(i) of Theorem 2.11 is proved. �

Proof of Theorem 2.11, Parts (ii) and (iii): Assume that δ > δ∗. Since 0 is a
stationary solution of (2.5) and u(0, x) = p0 > 0, we obtain that u(t, x) > 0
in R

+ × Ω, and again, from standard parabolic estimates, we know that u

converges in W
2,τ
loc (Ω) (for all 1 ≤ τ < ∞) to a bounded stationary solution

u∞ ≥ 0 of (2.5) as t → +∞. Moreover, in the periodic case, from the L-
periodicity of the initial data and of the equation (2.5), we know that u(t, ·)
and u∞ are L-periodic. Therefore the convergence is uniform in Ω. It follows
from Theorem 2.6, Part (ii) that u∞ cannot be a significant solution of (2.10).
Moreover, if δ > δ2, Theorem 2.10, Part (ii) ensures that u∞ is a remnant
solution of (2.10). �
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3 Numerical investigation of the effects of the

environmental fragmentation

We propose here to apply our results concerning the estimation of the maxi-
mal sustainable yield with respect to environmental fragmentation. We show
that, firstly, the gap δ2−δ1, obtained from (2.17) and Theorem 2.10, remains
small whatever the degree of fragmentation is. This gap corresponds to the
values of the harvesting quota δ for which we do not know whether the pop-
ulation density will converge to a significant or a remnant solution of the sta-
tionary equation (2.10), practically speaking. Secondly, we show that there
is a monotone increasing relation between the maximal sustainable yield δ∗

and the habitat aggregation.
In order to lessen the boundary effects, and to focus on fragmentation,

we placed ourselves in the periodic case. For our numerical computations,
we assumed that the environment was made of two components, favourable
and unfavourable regions. It is expressed in the model (2.5) through the
coefficient µ(x), which takes two values µ+ or µ−, depending on the space
variable x. We also assumed that

µ+ > µ−, ν(x) ≡ 1, h(x) ≡ 1 and D = 1.

Using a stochastic model for landscape generation [28], we built 2000 sam-
ples of binary environments, on the 2-dimensional period cell C = [0, 1]2, with
different degrees of fragmentation. In all these environments, the favourable
region, where µ(x) = µ+, occupies 20% of the period cell. The environmental
fragmentation was defined as follows. We discretised the cell C into nC =
50×50 equal squares Ci. The lattice made of the cells Ci was equipped with
a 4-neighbouring system V (Ci) (see Fig. 1), with toric conditions. On each
cell Ci, we assumed that the function µ either took the value µ+ or µ−, while
the number n+ = card{i, µ ≡ µ+ on Ci} was fixed to nC × 20

100
= 125. For

each landscape sample ω , we set s(ω) =
1

2

∑

Ci⊂C

∑

Cj∈V (Ci)

11{µ(Cj) = µ(Ci)},

the number of pairs of similar neighbours (Ci, Cj) such that µ takes the same
value on Ci and Cj (11{·} is the indicator function). The number s(ω) is di-
rectly linked to the environmental fragmentation: a landscape pattern is all
the more aggregated as s(ω) is high, and all the more fragmented as s(ω) is
small (Fig. 2). Thus, we shall refer to s as the “habitat aggregation index”.
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Figure 1: The 4-neighbourhood system: an element Ci of C and its four
neighbours.

0 1

1

(a) s = 3400

0 1

1

(b) s = 3800

0 1

1

(c) s = 4200

0 1

1

(d) s = 4600

0 1

1

(e) s = 4800

0 1

1

(f) s = 4900

Figure 2: Some samples of the landscapes used for the computations of δ1

and δ2, with different values of the habitat aggregation index s. The black
areas correspond to more favourable environment, where µ(x) = µ+.
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For our computations, we took µ+ = 10 and µ− = 0, and we computed
the corresponding values of λi

1, δi
1 and δi

2 on each landscape sample ωi of
aggregation index si, for i = 1 . . . 2000. The eigenvalues λi

1 were computed
with a finite elements method. We fitted the data sets {(si, δi

1)}i=1...2000 and
{(si, δi

2)}i=1...2000 using ninth degree polynomials (it is enough to assess if the
relations between s and δ1, δ2 tend to be monotonic or not). The resulting
fitted curves δ1,f and δ2,f are presented in Fig. 3. Under the assumption of
normally distributed values of δ1 and δ2 for fixed s values, we computed a
lower prediction bound (δ1,lo) for new observation of δ1 and an upper pre-
diction bound for δ2 (δ2,up), with a level of certainty of 99%. Thus, given
a configuration ω, with a fixed value of s, when δ is smaller than δ1,lo, we
take a 0.5% chance of being above δ1, while when δ is smaller than δ2,up, we
take a 0.5% chance of being below δ2. The small thickness of the intervals
(δ1,lo, δ2,up) emphasises the quality of the relationship between the habitat
aggregation index s and the maximum sustainable yield δ∗ ∈ [δ1, δ2]. This
also indicates that the criteria of Theorems 2.10 and 2.11 are close to be
optimal, at least in some situations.

Furthermore, as we can observe, the values of δ1 and δ2 tend to increase
as s increases, and thus as the environment aggregates. Since δ∗ ∈ [δ1, δ2], we
deduce from the computations represented in Fig. 3 that δ∗ tends to increase
with environmental aggregation.

These tests were performed for particular values of µ+ and µ−. However,
the thickness of the interval (δ1, δ2) can be determined for all values of µ+,
µ− without further numerical computations, provided that µ+ − µ− = 10.
Indeed, let us set B := µ+ − µ−, and for a fixed value of B, let µ0(x) be a
given L-periodic function in L∞(RN) taking only the two values µ+

0 = B and
µ−

0 = 0. Let λ1,0 be the first eigenvalue of the operator −∇2 − µ0I on C,
with L-periodicity conditions, φ0 the associated eigenfunction with minimal
value φ0 and

δ1,0 :=
λ2

1,0φ0

(1 + φ0)2
and δ2,0 :=

λ2
1,0

4
.

We have the following proposition.

Proposition 3.1 Assume that µ(x) = µ0(x) + µ−, with µ− > λ1,0. Let δ1

and δ2 be defined by (2.17). Then we have δ2 − δ1 =

(
1 − µ−

λ1,0

)2

(δ2,0 − δ1,0).

This result also indicates that the information on δ∗ is all the more precise as
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Significant
solutions

Figure 3: Solid lines: δ1,f and δ2,f correspond respectively to the data sets
{(si, δi

1)}i=1...2000 and {(si, δi
2)}i=1...2000, fitted with ninth degree polynomials.

Dashed lines: δ1,lo is a lower prediction bound for new observations of δ1 and
δ2,up an upper prediction bound for new observations of δ2, with in both cases
a level a certainty of 99%.
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the growth rate function takes low values. However, the “relative thickness”

of the interval (δ1, δ2), compared to δ1,
δ2 − δ1

δ1

, does not depend on µ−, as is

can be easily noticed.
Proof of Proposition 3.1: The relation λ1[µ(x)] = λ1,0 − µ− is a direct conse-
quence of the uniqueness of the first eigenvalue λ1. We assume that µ− > λ1,0,
so that λ1[µ(x)] < 0. From the uniqueness of the eigenfunction φ associated
to λ1, it also follows that φ does not depend on µ−. Therefore, δ1 and δ2

satisfy δ1 =
(λ1,0 − µ−)2φ0

(1 + φ0)2
and δ2 =

(λ1,0 − µ−)2

4
. The result immediately

follows. �

4 A few comments on the spatially-explicit

proportional harvesting model

In this model, the population density u is governed by the following equation

ut = D∇2u + u(µ(x) − ν(x)u) − q(x)u, x ∈ Ω, (4.34)

with L-periodicity of the functions µ(x), ν(x) and q(x) in the periodic case,
and with Neumann or Dirichlet boundary conditions in the bounded case.
Thus, setting

τ(x) := µ(x) − q(x),

this model is equivalent to the SKT model (1.3). Hence, many properties
of the solutions of this model are described in the existing literature. In
particular the existence, nonexistence and uniqueness results of Theorems
2.2 and 2.4 apply. The condition λ1[µ(x) − q(x)] < 0 is therefore necessary
and sufficient for species persistence. Furthermore, the theoretical results of
[7], [11], [27] on the effects of habitat arrangement on species persistence are
also true for this model.

For instance, when the function µ(x) is constant, with µ(x) ≡ µ1 > 0,
and if the domain Ω is convex and symmetric with respect to each axis
{x1 = 0}, ..., {xN = 0}, the following result is a straightforward consequence
of the paper [7],

Theorem 4.1 (i) In the periodic case, λ1[µ1 − q∗k(x)] ≤ λ1[µ1 − q(x)].
(ii) In the bounded Dirichlet case,λ1[µ1 − q∗k(x)] ≤ λ1[µ1 − q(x)],
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(iii) In the bounded Neumann case, if Ω is a rectangle, λ1[µ1 − q
♯
k(x)] ≤

λ1[µ1 − q(x)].

where q∗k denotes the symmetric decreasing Steiner rearrangement of the
function q with respect to the variable xk, and q

♯
k denotes the monotone

rearrangement of q with respect to xk (see [7] and [9] for the definition of these
rearrangements). These rearrangements of a function q not only preserve
its mean value, but also its distribution function. This means that if, for
instance, q corresponds to a “patch” function taking the values q1, q2 and q3

in some regions A1, A2 and A3 respectively, with A1 + A2 + A3 = |C|, then
the areas of the regions where the rearranged function q∗ of q♯ takes the value
q1, q2 and q3 remain equal to A1, A2 and A3 respectively.

Theorem 4.1, combined with Theorem 2.4 say that the spatially rear-
ranged harvesting strategies are better for species survival. This result can
be helpful from a resource management point of view. Indeed, the authori-
ties can rearrange the position of the harvested areas in order to improve the
chances of population persistence. The result of Theorem 4.1 shows that,
in the framework of these models, the creation of a large reserve gives more
chance of persistence than the creation of several small reserves, and is in
accordance with the former results of [18] and [20] in the Dirichlet case. See
Fig. 4 for some illustrations in the bounded case with Dirichlet and Neumann
boundary conditions.

5 Discussion

We have proposed a model for studying populations in heterogeneous environ-
ments, submitted to an external negative forcing term, which corresponds to
a quasi-constant-yield harvesting. The introduction of a “regularised Heavi-
side” term ρε(u), which multiplies the constant-yield harvesting term δh(x),
enabled us to guarantee the nonnegativity of the solutions of our model, and
thus its actuality.

We carried out new mathematical results on the elliptic equation satisfied
by the stationary states of the model, and on the associated parabolic equa-
tion. Both qualitative and quantitative results were obtained. On the quali-
tative standpoint, we described the behaviour of the solutions of the model
in terms of the amplitude δ of the harvest function. Two main types of solu-
tions were found: the remnant solutions, which are always below a fixed small
threshold, and therefore close to 0, and the significant solutions, which are
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Figure 4: Examples of applications of Theorem 4.1, Parts (ii) and (iii) to
reserves management. In the figures (a) and (b), the boundary Γ of Ω is
lethal (Dirichlet boundary conditions). (a): The initial effort function q(x)
takes two values, q+ > 0 in the white area and q− = 0 in the shadowed
regions, which correspond to reserves. (b): Position of the reserves after
a symmetric decreasing Steiner rearrangement along the ∆1 and ∆2 axes,
successively. The rearranged configuration (b) always give more chances of
species persistence. In the figures (c) and (d), the boundary Γ is divided into
two parts: Γ = Γ1∪Γ2. Γ1 is represented with a solid line and can correspond
to a coast, while Γ2 is represented with a dashed line, and can correspond
to a non-physical limit that the species cannot cross (Neumann boundary
conditions). (c): The effort function q(x) again takes two values, q+ > 0 in
the white area and q− = 0 in the reserves. (d): Position of the reserves after
monotone rearrangement along the horizontal and vertical axes, successively.
The chances of persistence are better in the rearranged configuration (d).
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always above this threshold, and guarantee a constant yield. We discussed
the maximum possible number of significant solutions, which was found to be
equal to 2, under an hypothesis of positivity of the second eigenvalue of the
linearized around the steady state 0, of the (time independent part of the)
SKT-model. We established quantitative formula for some thresholds δ1 and
δ2 such that a population density initially driven by the SKT model converges
to a significant solution if an harvesting quota δ ≤ δ1 is applied, whereas it de-
creases to a remnant solution if δ ≥ δ2. The quantitative aspects of our study
essentially consisted in discussing the effect of environmental heterogeneity
on the long time behaviour of the population density. Namely, computing
the values of δ1 and δ2 on 2000 samples of stochastically obtained patchy
environments, with different levels of fragmentation we found a monotone
increasing relationship between these two coefficients and an environmental
aggregation index s. This indicates that, for given areas of favourable and
unfavourable regions, the harvesting quota that a species can sustain while
guaranteeing and time-constant yield is higher when the favourable regions
are aggregated.

The reader may note that, in our model, the species mobility is not af-
fected by the environmental heterogeneity. These effects could be modelled
by using a more general dispersion term, of the form ∇ · (A(x)∇u), instead
of D∇2u, where A(x) stands for the diffusion matrix (see [7], [30]). In fact,
most of our results still work when the matrix A is of class C1,α (with α > 0)
and uniformly elliptic; i.e. when there exists τ > 0 such that A(x) ≥ τIN for
all x ∈ Ω. Indeed, Theorems 2.2, 2.4, 2.7, 2.10, 2.11 remain true under this
more general assumption. However, the effects of environmental heterogene-
ity may differ, depending on the way A(x) and µ(x) are correlated (see [16]).
The results of § 4 on the effects of the arrangements of the harvested regions
in the proportional harvesting case may also not be valid with this disper-
sion term. However, in situations where A(x) takes low values (slow motion)
when q(x) is low (“reserves”, see § 4), as underlined in [27], a simultaneous
rearrangement of the functions A(x) and q(x) leads to lower λ1 values and
therefore to higher chances of species survival.
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