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Flash Flood
Flood attenuation dam at “La Rouvière”, Gard Dept., France

Regular day - May 2011 September 9th 2002

• 687 mm of rainfall in 24h : 30 % - 50 % of the annual rainfall
• Runoff of 830 m3/s : control runoff 1 m3/s
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Anduze Area

In terms of dynamics, it is interesting to relate the
reported peak times to the rain event space–time analy-
sis presented in section 4b. The downstream tributaries
of the Vidourle River clearly responded early to the
rainfall that occurred during phase 1: between 1500
(e.g., watershed 1) and 2100 UTC (e.g., watersheds 2
and 6) on 8 September 2002. The response of the down-
stream tributaries of the Gard River to the phase 1 rain
is consistently estimated to have occurred later (at 2200
UTC for watersheds 14 to 16) for the left bank tribu-
taries. In the southern part of the phase 2 rain core
(watersheds 4 and 12), the first peak occurred at about
2300 UTC. In the northern part, due to the proximity of
the phase 2 and phase 3 rain peaks (watersheds 7, 10,
and 11), only one discharge peak, occurring between
0400 and 0600 UTC, was reported by the witnesses. A
similar observation was made for the mountainous up-
stream Cévennes watersheds 8, 9, and 17. The phase 3
rainfall consistently produced the second discharge
peak between 0500 and 0800 UTC in the upstream
tributaries and between 0900 and 1100 UTC in the
downstream tributaries on 9 September 2002. In the
Gard plains, there is evidence of concomitancy between
the Gard flood and the secondary flash floods occurring
on the downstream Gard tributaries (watersheds 14, 15,

and 16) during the cold front passage, due to the de-
layed contribution of the upstream tributaries. This fact
probably increased the hydrological impact of the rain
event.

The spatial–temporal analysis of the postevent inves-
tigation data just presented leads to expected results:
the headwater tributaries reacted with a slight delay to
the rainfall bursts observed during the three phases of
the rain event and the highest specific discharges oc-
curred where the rain event was the most intense. A
complex response, to be analyzed in detail in future
work, is likely in the Gard plains during the morning of
9 September 2002 as a result of the convolution of the
spatial–temporal structure of the rain event with the
geomorphologic characteristics of the watersheds.

b. Typical hydrological behaviors

The hydrological model proposed by Gaume et al.
(2004) was implemented for a preliminary analysis of
the postevent investigation dataset. To briefly recall the
main characteristics of this model: 1) the watershed is
represented as a cascade of river reaches having a rect-
angular cross section, connected to two rectangular
slopes; 2) the floods are assumed to be essentially pro-
duced by surface or subsurface runoff water; 3) the Soil

FIG. 10. Location of the Vidourle, Gard, and Cèze River watersheds and of the data during the postevent investigation: witness
accounts (triangles) and peak discharge estimates (diamonds). The location of the Crieulon and upper Vidourle watersheds discussed
in section 5b are also shown (gray shaded areas 1 and 2, respectively). The geographical domain corresponds to the light gray box in
Fig. 1.
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From Delrieu et al (2004) “The Catastrophic Flash-Flood Event of 8-9 September 2002 in the Gard

Region, France: A First Case Study for the Cévennes-Vivarais Mediterranean Hydrometeorological

Observatory”, Journal of Hydrometeorology
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Flood Risk Measures = Return levels
RHigh level quantiles of river runoff termed return levels

For example, the 100-year return level is the river runoff Q which is
expected to be exceeded on average once every T = 100 years.

P (Q > RT ) =
1

T

Runoff is difficult to measure : deduced from the water
level

For small catchments, return levels are often estimated
from surrogate runoff simulated from a rainfall-runoff
model

Limnimeter
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Rainfall-Runoff Models

Hydrological cycle c©UCAR

Seek to reproduce the hydrological cycle

Conceptual models : simplified modelling
with few parameters (2-10)

Main input : rainfall

Exploit spatial information of rainfall

Rainfall series are often too short :
stochastic rainfall generators provide surrogate rainfall series
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Stochastic Rainfall Generators

Rainfall intermittency
Meta-Gaussian models :
Gaussian dependence structure with non-Gaussian marginals
Z = ψ(Y ) Y ∼ N (µ,Σ), ψ(·) is non-decreasing monotonic
Z has an atom at 0 (no-rain) and a continuous part (rain)

Vischel T. et al. (2009) “ Conditional simulations schemes of rain fields and their applications to rainfall-
runoff modeling studies in the Sahel” J. of Hydrology 375
Bouvier C. et al. (2003) “Generating rainfall fields using principal components decomposition of the
covariance matrix: a case study in Mexico City” J. of Hydrology 278
Guillot G. (1999) “Approximation of Sahelian rainfall fields with meta-Gaussian random functions” Sto.
Env. Res. & Risk Ass. 13

Indicator function :
Either with probit (truncated Gaussian) or logistic (binomial) models
Barancourt C. & Creutin J. D. (1992) “A method for delineating and estimating rainfall fields” WRR
28
Kleiber W. et al. (2011) “Daily spatiotemporal precipitation simulation using latent and transformed
Gaussian processes” WRR 48
Hughes J. P. et al. (1999) “A non-homogeneous hidden Markov model for precipitation occurrence”
Appl. Statist. 48 Part 1
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Rainfall Inhomogeneity
Rainfall patterns : based on rainfall features and/or on
atmospheric circulation
Rmixture models

Thompson C. S. et al. (2007) “Fitting a multisite daily rainfall model to New Zealand
data” J. of Hydrology 340
Leblois E. & Creutin J. D. (2013) “Space-time simulation of intermittent rainfall with
prescribed advection field : adaptation of the turning band method” WRR 49
Bellone E. et al. (2000) “A hidden Markov model for downscaling synoptic atmospheric
patterns to precipitation amounts” Climate Research 15
Garavaglia F. et al. (2010) “Introducing a rainfall compound distribution model based on
weather patterns sub-sampling” HESS 14

Parameters vary with covariates
Rconditional distributions

Kleiber W. et al. (2011) “Daily spatiotemporal precipitation simulation using latent and
transformed Gaussian processes” WRR 48
Chandler R. E. & Wheater H. S. (2002) “Analysis of rainfall variability using generalized
linear models: A case study from the west of Ireland” WRR 38

Flood-Risk Rainfall : rainfall which might lead to flooding
A single rainfall pattern : significant spatial average
• potentially no need to deal with intermittency
• no mixture or conditional modelling 7



Objectives and Data

RAssess the impacts of the choice of multivariate density models as
stochastic generator of rainfall which might lead to flooding

Evaluation criteria in terms of change in rainfall and runoff return levels

Eight daily raingauge stations

Period : 01/01/1958 - 12/31/2000
43 years or 15,706 days

Flood-risk rainfall :
daily spatial average above 50 mm
265 days less than 2%
only 4 zero obs. ↑ 0.2 mm

Assumption : no temporal dependence
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Pairwise Exploratory Analysis : Kendall Correlation

RBoth correlated and
uncorrelated pairs
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Pairwise Exploratory Analysis : χ-plot

Bivariate random vector (X, Y )

Extremal dependence measure

χ = lim
u→1

P (FY (Y ) > u|FX(X) > u)

Asymptotic independence
χ = 0

Asymptotic dependence
0 < χ ≤ 1

RBoth A. independent and
A. dependent pairs
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Multivariate Density Models : Copulas

X = (X1, . . . , X8) rainfall intensities such that (X1+···+X8)/8 > 50 mm

Let FX1
(·), . . . , FX8

(·) be the marginal distribution functions

FX(x1, . . . , x8)︸ ︷︷ ︸
joint distribution function

= C(FX1
(x1), . . . , FX8

(x8))︸ ︷︷ ︸
copula function

Margins
Either a Gamma or semi-parametric with GPD in the upper tail :

F̃Xj(x) =

F̂Xj(x) if x ≤ uXj

1− {1− F̂n(uXj)}{1 + ξj(x−uXj)/σj}
−1/ξj
+ if x > uXj

where uXj is some large threshold for Xj

Copula functions
Either Gaussian (benchmark) or Student t
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Multivariate Density Models : Skew Elliptical
Azzalini A. & Capitanio A. (2003) J. R. Statist. Soc.B. 65, Part 2, pp. 367-389

RElliptical density multiplied by a skewing factor

Standard Skew Normal
Density :

2 φd(x; Ω) Φ(αTx), x ∈ Rd

φd(·;Ω) d-dimensional standard Normal
density with correlation matrix Ω

α ∈ Rd skewness parameter
α = 0⇒ regular Normal density

Skew t defined as a transformation of the
Skew Normal Flecher et al. (2010) A stochastic weather

generator for skewed data, WRR 46
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Skew Elliptical Models
Multivariate Skew Normal and Skew t with fixed ν = 6

Margins
Either the truncated skew distribution margins (univariate skew Normal
or skew t)

Or transformed margins to standard Normal or standard t with ν = 6

1. Transform to Uniform with the semi-parametric GPD

U = F̃Xj(Xj)

2. Transform to standard Normal or t with quantile functions :

Φ(−1)(U)
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Multivariate Density Models : Extreme Value

Xi = (Xi1, . . . , Xi8) vector of rainfall intensities with i = 1, . . . , n

Let the component-wise maxima be :

Mn = (Mn1, . . . ,Mn8) where Mnj = max
i=1,...,n

Xij

Theorem
Assuming that Xj is standard Fréchet ∀j, then if

P (Mn/n ≤ x)
d→ G(x) with G non-degenerate

Then G satisfies some specific constraints which define the class of
multivariate extreme-value distributions.

Examples x = (x1, . . . , x8) > 0

Independence G(x) = exp
{
−(x−1

1 + · · · + x−1
8 )
}

Perfect dependence G(x) = exp
{
−max(x−1

1 , . . . , x−1
8 )
}

Logistic/Gumbel G(x) = exp
{
−(x

−1/β
1 + · · · + x

−1/β
8 )β

}
, β ∈ (0, 1)
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RPros
Appropriate models for multivariate extremes defined as component-wise
maxima
Also for random vectors above a high threshold : X|X > u

RCons
Not many models in dimension 8
Logistic/Gumbel is not flexible enough : only one parameter
characterizes the dependence
Do not quite correspond to the problem expressed by hydrologists :
rainfall do not have to be extreme everywhere to provoke flooding

Flood-risk rainfall problem
Let X = (X1+···+X8)/8 be the spatial average.
Then the problem is more accurately expressed as : X|X > u
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Conditional Model for Multivariate Extremes
Heffernan & Tawn (2004) J. R. Statist. Soc. B 66, Part 3 pp. 497-546

X = (X1, . . . , X8) rainfall intensities, X = (X1+···+X8)/8 spatial average

For non-negatively dependent variables, the conditional distribution of
X|X = x for large x is modelled as :

X = a x + xb Z with Z ∈ R8 and Z ⊥ X

a overall strength of dependence
b how the dependence changes with X
Z captures the residual dependence non-parametrically

Keef C. et al. (2009) J. of Hydrology 378
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Comparative Analyses

Marginal Fit : Q-Q Plots
Either Gamma, semi-parametric GPD,
Skew Normal or Skew t
Look at two stations at the top 900 m
and two in the valleys 140 m

Spatial Average 5000 simulations
Return level curves : X = (X1+···+X8)/8 times by each of the five models
+ PoT modelling

Conditional Probabilities 10000 simulations repeated 5000 times
P (Xj > Rj(T )|Xi > Ri(T )) where Rj(T ) is the T-year return level for Xj
Xi is the Barre-des-Cevennes station
Xj is the Cassagnas or the Generargues station
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Marginal Fit

Gamma
Maximum likelihood

k̂ = 3.65
1/θ̂ = 0.051

k̂ = 4.38
1/θ̂ = 0.046

k̂ = 2.76
1/θ̂ = 0.049

k̂ = 3.87
1/θ̂ = 0.061
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GPD
Probability weighted
moments

u = 70
ξ̂ = 0.045
σ̂ = 31.1

u = 85
ξ̂ = - 0.083
σ̂ = 45.6

u = 60
ξ̂ = 0.090
σ̂ = 28.9

u = 50
ξ̂ = 0.010
σ̂ = 29.6
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Skew Normal
Maximum likelihood
Truncation below 0

µ̂ = -0.82
σ̂ = 1.68
α̂ = 76116

µ̂ = -0.75
σ̂ = 1.56
α̂ = 48799

µ̂ = -0.67
σ̂ = 1.44
α̂ = 45380

µ̂ = -0.74
σ̂ = 1.54
α̂ = 7688
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Spatial Fit : Spatial Average
Semi-parametric GPD margins P (X > xT ) = 1/T

Normal Copula Student t Copula

Skew Normal Skew t Heffernan & Tawn
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Spatial Fit : Conditional Probabilities
Semi-parametric GPD margins

Cassagnas |
Barre-des-Cevennes

Uncond. Prob.

Generargues |
Barre-des-Cevennes
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Model Selection

Semi-parametric GPD margins

Five dependence structures

Leave-one-out cross-validation

Cramer-von Mises statistic :
265∑
j=1

{
Cn(Uj)− Cθn(Uj)

}2
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Conclusions and Perspectives

• spatial dependence structure has a strong influence on the spatial
average of rainfall

• choice of margins too influences the spatial average

• a variety of multivariate models readily available in R packages

•MEV is not easily applicable because all variables are not extremes at
the same time

• assess the impacts on runoff return levels

• spatial process modelling

• hourly time-step

• Anderson-Darling goodness-of-fit

• other models ?
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R Librairies

• evd, extRemes, fExtremes, mex

• MASS

• copula

• sn

• ggplot2, fields

Thank you for your attention.
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