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Context and problematic

Short term forecasting of wind power production

scenarios

» Wind power production needs to be forecast few hours in
advance for an optimal balance
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» Probabilistic forecast are necessary to handle uncertainty in
decision making
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» Wind power production needs to be forecast few hours in AT

advance for an optimal balance

problematic

» Probabilistic forecast are necessary to handle uncertainty in
decision making

» Marginal distribution are not sufficient and information about
the spatial and temporal uncertainties are necessaries —
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Context and problematic
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Example of spatio-temporal scenarios forecast N
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> Use of meteorological ensembles of wind in combination with Cariosi amt
a stochastic power curve

problematic
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Context and
problematic

> Use of meteorological ensembles of wind in combination with
a stochastic power curve

» Copula model directly on wind power

Transformation to have gaussian marginal
e =Feone (0600), J=1 0 k=0, K

(with & probit function, I:_t+k|t estimated)
Gaussian copula with covariance structure e.g.

|k1 — kol

14

cov(Xetky s Xetk,) = EXP (— ) , 0<k,k <K
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Context and problematic

The evaluation problem
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Figure : Example sets of
time trajectories (51) of wind
power production, based on
(i) the ensemble-based
method (bottom), (ii) the
Gaussian copula method with
range parameter v =7
(middle) and v =1 (top).
All three sets have the same
marginal predictive
distributions.
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Context and problematic

The evaluation problem

power [p.u]

power [p.u]

power [p.u]
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horizon [h]
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Formally
Z: = (Yetk)k=1,.. K

R.V whose distribution is to
be predicted

A(J) = D’t+1|t7}7t(1+)2\t’ cee 7-)7t(1—-)K|t]
the jth time trajectory
j=1...,J.

Question : How to evaluate
the quality of the generated
scenarios ?
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Forecast Evaluation Rank histogram and calibration
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Forecast Evaluation ~ Rank histogram and calibration

Marginal calibration of forecast
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Figure : Probabilistic reliability of the three sets of short-term scenarios
of wind power generation as evaluated by rank histograms. These
results are for (i) the ensemble-based method (left), (ii) the Gaussian
copula method with range parameter v = 1 (middle) and v = 7 (right).
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Forecast Evaluation Rank histogram and calibration

Diagnostic approaches

Multivariate rank histogram Gk

short-term wind power
generation
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Figure : Probabilistic reliability of the three sets of short-term scenarios
of wind power generation as evaluated by multivariate rank histograms
(here based on Minimum Spanning Trees). These results are for (i) the
ensemble-based method (left), (ii) the Gaussian copula method with
range parameter v = 1 (middle) and v =7 (right).

One can discard the unrealistic temporal structure for v =1 but it
is difficult to sort the other two.
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Forecast Evaluation
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Forecast Evaluation

Energy score
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Energy scores
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J J

DL

i=1 j=1

Energy scores

where ||.||2 is the K-dimensional /?> norm.

Method

Energy score Es (st. dev.)

Gaussian copula (v =1)
Gaussian copula (v =7)
Ensemble-based

1.164 (0.014)
1.146 (0.014)
1.130 (0.014)

Ensemble-based (non-recalibrated)

Table

1.165 (0.014)

: Energy score for the various types of time trajectories. The

standard deviation of the mean Energy score estimator is also given
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Forecast Evaluation

Alternative energy scores

J
1
ESdQ) jz ‘Vd ZtK_

Table : Energy score Es(d, q) for the various types of time trajectories
with different smoothness norms. The parameters (d, q) are such that
d € {0,1,2} and g € {0,1,00}. The standard deviation of the mean

)

Energy scores

J J
1 A(i
Wlla=57 2 DIV~

i=1 j=1

Energy score estimator is also given, between brackets.

Gaussian copula (v = 1)

Gaussian copula (v = 7)

Ensemble-based

Es(0,1) 7.804 (0.112) 7.822 (0.112) 7.658 (0.112)
es(1,1) 4.842 (0.059) 3.869 (0.056) 3.799 (0.058)
Es(21) 7.542 (0.084) 5.486 (0.087) 5.381 (0.087)
£5(0,2) 1.164 (0.015) 1.149 (0.015) 1.130 (0.015)
Es(1,2) 0.771 (0.007) 0.613 (0.008) 0.603 (0.009)
Es(2,2) 1.183 (0.011) 0.871 (0.013) 0.856 (0.013)
£s(0,20) 0.744 (0.005) 0.686 (0.004) 0.650 (0.004)
Es(1,00) 0.738 (0.005) 0.486 (0.004) 0.452 (0.004)
Es(2:90) 1.177 (0.008) 0.696 (0.006) 0.646 (0.005)

Reference: ?.
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Forecast Evaluation  Event based verification

Event based verification: horizon wise
Idea 1: for any horizon h and time t define a well chose
event, example of event : variation of production.

g(Zt§k7h1§):1{(maxfe{k—h/2 ,,,,, kthy2y Zelil—minic (k—nya,. . k+h/2}zr[i])25}

> transform it into a probability forecast with the scenarios:
1 L
Pe[a(z:0)] = 5 >_e(2:0)
j=1

» different way to evaluate the forecast probability e.g. Brier
Score:

,
72Pmnw—uww
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Figure : Event-based verification of time trajectories, for the
maximum-gradient type of events. Different values of the window
length h and of the threshold £ are considered. Left: event n°1 - h = 3,
&£ =0.2, right: event n°2- h=26,£=0.2
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Figure : Event-based verification of time trajectories, for the
maximum-gradient type of events. Different values of the window
length h and of the threshold £ are considered. Left: event n°3 -
h =12, £ = 0.4, right: event n°4- h=12, £ =0.5
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Forecast Evaluation  Event based verification
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Event based verification: horizon wise forscenarios of

short-term wind power
generation

> One can decompose the Brier score into reliability and
resolution

» Both have the same resolution (i.e. ability to forcast different
probabilities for different situations) but not the same
reliability
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Event based
verification
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Figure : Decomposition of the Brier score into its two component for
the event n°4 - h =12,
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Event based verification: temporal calibration

> |dea 2: evaluate the temporal calibration of the occurrence of
a well chosen "temporal” event
» Different way to define the event and the evalu e.g. the

Forecast Evaluation

filtered signal exceed a threshold
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Forecast Evaluation  Event based verification

Event based verification: temporal calibration

» Here ECMWF ensemble used to make a forecast of temporal
uncertainty around the timing of ramp events

» ECMWEF ensembles are not naturally temporally calibrated.

» A calibration procedure has been proposed. Paper : A.
Bossavy, R. Girard, G. Kariniotakis. Forecasting Ramps of
Wind Power Production with Numerical Weather Prediction
Ensembles - Wind Energy 2013.
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» Verification tools for scenario evaluation was proposed

» A simple exemple illustrates the interest of the different
existing tools

» One can often find a metrics that will be in favor of a given Energy scor
i
procedure verification
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Conclusion and further work

» Verification tools for scenario evaluation was proposed

> A simple exemple illustrates the interest of the different
existing tools

> One can often find a metrics that will be in favor of a given
procedure

» Event based verification spatio-temporal generalisation

ECMWF Analysis - 23 January 2009 12:00

4 Track in ECMWF-Analysis
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Conclusion and further work

» Verification tools for scenario evaluation was proposed

» A simple exemple illustrates the interest of the different
existing tools

» One can often find a metrics that will be in favor of a given
procedure

» Event based verification spatio-temporal generalisation

» Relation between score and parameter estimation procedure
for a well chosen model
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Conclusion and further work

» Verification tools for scenario evaluation was proposed

» A simple exemple illustrates the interest of the different
existing tools

» One can often find a metrics that will be in favor of a given
procedure

» Event based verification spatio-temporal generalisation

» Relation between score and parameter estimation procedure
for a well chosen model

» Confidence intervals on the different metrics
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» Verification tools for scenario evaluation was proposed

» A simple exemple illustrates the interest of the different
existing tools

» One can often find a metrics that will be in favor of a given Energy scor
i
procedure verification

» Event based verification spatio-temporal generalisation

» Relation between score and parameter estimation procedure
for a well chosen model

» Confidence intervals on the different metrics
» Adaptive procedures and testing procedures

» Theoretical analysis of the separation power of different tests
for defined class (minimax test, ... )
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Rank histogram and
calibration

Energy scores

Event based
verification

Most of this presentation is taken from a paper with the same
name published in Applied Energy in 2012.

If you have further questions, if you want to discuss further, If you
are interested in collaborating on a subject, ... feel free to contact
me robin.girard@mines-paristech.fr.
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