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Stochastic Weather Generators

I Stochastic weather generators:
I Provide fast and realistic simulations of atmospheric variables.
I Facilitate understanding the probabilistic structure.
I Required by impact studies.

I Note:
I Statistical models, not forecast models.
I Reproduce reality accurately in a distributional sense.
I Different from climate numerical models.

I Precipitation has been a key variable of interest.
I Serves as input into hydrologic and agricultural models.



Features of Precipitation Field

I Intermittent nature and high variability.

I Spatio-temporal dependence.
I Precipitation statistics are strongly scale dependent.

I Data are measured as averages over space-time scales.

I Rainfall zeros: precipitation occurrences.
I Especially for small time scales.
I Contribute significantly to the observed dependence.
I An important component in stochastic weather simulations.

I Intensity: non-Gaussian.



Our Contributions

I Consistent model for precipitation occurrences:
I Shorter time scale: 15-minute rain gauge data.
I Generate realistic spatio-temporal dependence.

I Model framework:
I Truncated spatio-temporal non-Gaussian random field model.

I Model diagnostics:
I Define meaningful precipitation statistics.
I Develop visualization methods for the assessment of

spatio-temporal dependence.

I Model assessment is important.
I Reproducing means of the precipitation.
I Reproducing “higher moments”: dependence.



Gauge Locations
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Rain Gauge Data

I High-frequency gauge-based space-time data:
I Time records of each bucket tip (0.01 inches) at each location.
I 12 Gauges from 05/19/2004 to 05/17/2007.
I Aggregate to different time scales.
I Unit: mm/hr.

I Percentage of rain for different time scales:

Time 10-min 15-min 30-min 1-hr 3-hr

Occurrence 1.77 2.55 4.91 6.47 10.42

Time 6-hr 1-day 1-week 1-mon 3-mon

Occurrence 14.77 32.72 88.57 99.76 100



Truncated Model

I Bell (1987): the truncated Gaussian random field model

W (x) =

{
f (Z (x)), Z (x) > c ;

0, Z (x) ≤ c .

I Stein (1992) considered Monte Carlo methods for prediction
and inference for truncated spatial data based on this model.

I For 15-minute rain rates:
I The value of c is high.
I GRF has thin tail distributions.
I The probability of exceeding c at many locations is low.
I It may not be sufficient to describe the dependence in the

occurrence.



More Flexible tRF

I t random field model (Røislien and Omre, 2006) is specified
by

I Mean function: µ(x).
I Positive definite scale function: κ(x, x′).
I The degrees of freedom: ν.

I The tRF tends towards a GRF as ν →∞.



Representation of Spatial tRF Model
I Univariate t random variable has the representation

T =
Z√
V /ν

.

I T has a heavier tail due to the random scaling
√

V /ν.

I Similarly, the multivariate t random vector for n locations

Y = µ +
Z

U
, νU2 ∼ χ2(ν).

I Given U = u, Y ∼ Nn(µ,Ω/u).
I The variability across realizations of Y is larger.
I A higher probability that Y exceeds c at many locations.
I tRF tends towards GRF as ν →∞.



Bivariate Illustration
P(Y2 > c |Y1 > c): ν = 3,∞ and ρ = 0.3, 0.5, 0.7.
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Precipitation Statistics

I Define the dry and the rain event:

D(x) = {Y (x) ≤ c
}
, R(x) = {Y (x) > c

}
.

I Precipitation statistics:
I Marginal dry: pD = Pr

(
D(x)

)
.

I Marginal rain: pR = Pr
(
R(x)

)
= 1− pD .

I Conditional dry: pD|D = Pr
(
D(x)|D(x′)

)
.

I Conditional rain: pR|R = Pr
(
R(x)|R(x′)

)
.



Conditional Dry Probability Plot
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Conditional Rain Probability Plot

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

j

ϕ R

1 1 2 3 4 5 5 5

Rain, 15−minute

0 2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
j

ϕ R

1 2 4 5 6 6 6 7 9

Rain, hourly



Comparing Model Simulations
I Purely spatial truncated tRF models with zero-mean.
I Degrees of freedom: ν = 3, 5, 7,∞.
I The marginal dry probability: 97.5%.
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Space-time tRF Model
I We propose a more flexible space-time tRF model

Y (x, t) =
Z (x, t)

U(t)
,

I Z (x, t): a zero-mean stationary GP with ACF K (x, t).
I νU2(t): a stationary Gamma process, where

U2(t) =
1

ν

ν∑
j=1

X 2
j (t),

I Xj(t)’s are i.i.d. zero-mean stationary Gaussian processes.
I For any given time t = t∗,

I νU2(t∗) is χ2
ν distributed.

I It follows that Y (x, t∗) is a spatial tRF.



Simulated U(t) Process
Temporal range parameter αu = 0.5, ν = 3.
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Spatio-temporal Covariance Function
I Stein (2005): spectral-in-time representation of K for data

taken regularly in time at a modest number of sites,

K (x, t) =

∫
R
S(ω)C

(
|x|γ(ω)

)
e iu

′xθ(ω)+iωtdω.

I All the functions have natural interpretations.
I Parameterization for even positive functions:

log
{
γ(ω)

}
=

L∑
k=0

ak cos(kω),

log
{
S(ω)

}
= −β log

(
sin
∣∣∣1
2
ω
∣∣∣)+

L∑
k=0

ck cos(kω).



Parameters

I Parameters of interest are:
I α: the spatial range in C (Matérn).
I β: measures the long-range time dependence in S .
I αu: dependence range in the U(t) process.
I ν: degrees of freedom.



Application to Rain Gauge Data

I Conditional probability plots for four seasons from Summer
2004 to Spring 2007.

I Look for patterns of the precipitation occurrences:
I Precipitation over a larger region and/or last longer time.
I Local storms.



El Niño Years?
I The years 2004 and 2006: weak El Niño years.
I The study region is not typically affected by the El Niño effect

in terms of total precipitation; How about spatial patterns?
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Model Fitting
I Empirical approach: based on Monte Carlo simulations.

I Minimizing the difference of the conditional probabilities
obtained from the model and from the observations.

I The estimates of (α, β, αu, ν) for Summer 2004-2006.

Year α̂ β̂ α̂u ν̂

2004 0.485 0.486 0.199 4
2005 0.495 0.558 0.232 5
2006 0.500 0.652 0.175 3

I Summer 2006:
I (α̂, β̂) = (0.811, 0.123) for the truncated GRF model.
I The estimate of the spatial range parameter is much larger.



Model Diagnostics: Summer 2006
I Compare the conditional rain probabilities by the functional

boxplot (Sun and Genton, 2011).

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Neighbors

ϕ~ R

tRF: 15−minute

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Neighbors

ϕ~ R

GRF: 15−minute



Consistent Spatio-temporal Model

I Another important aspect: wet or dry spell.

I Temporal dependence is necessary to produce them correctly.
I From a statistical modeling point of view

I It is desirable to have a consistent space-time model to
produce precipitation features at different scales.

I Rather than to have a separate model for each scale.

I In order to produce the desired rain or dry spells at larger
scales through aggregation

I Need to characterize the complex dependence structure
precisely at small space-time scales.

I We can use aggregation to assess model performance.



Model Diagnostics: Summer 2006
I Aggregate to hourly data
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Computation

I Estimation:
I Generate data at 12 locations and 8736 time points.
I Circulant embedding techniques.
I FFT for fast and exact simulations (Wood and Chan, 1994;

Helgason et al., 2011).

I Simulation on a grid.



Discussion

I A stochastic space-time model for precipitation occurrence:
I Truncated tRF model with random scaling U(t).
I The increased variability is useful for shorter time scale.

I Model assessment:
I Conditional probability plot, and aggregation.
I Functional boxplot: the fast algorithm (Sun et al., 2012).

I Precipitation intensity:
I More complete analysis: includes the positive rainfall amounts.
I Investigate Bayesian inference methods.
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