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e 30% of the world economic activities are affected by meteorologlcal
conditions (source: IPCC)

e IPCC scenarios of climate change have a coarse spatial resolution !!
Not adapted to ecological, social, economic scales of impact studies

> Social, environmental and economic impacts: water resources, hydrology,
agriculture, air pollution, human health, etc.

> How will climate change interact with existing environmental features at a
regional/local scale ?

e Downscaling:
To derive sub-grid scale (regional or local)
weather or climate using General Circulation
Models (GCMs) outputs or reanalysis data
(e.g. NCEP)
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~ 250 km

\/
Region, city,
fields, station

How to downscale?: The basics

Coarse atmospheric data
Precipitation, temperature, humidity,

geopotential, wind, etc.
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How to use the coa:rse simulations to
produce regional/local climate features?

P

f
:
;
¥

Local variables (e.g., precip., temp.)

(small scale water cycle, impacts — crops, resources — etc.)




Introduction

How to downscale?: The basics

Coarse atmospheric data
Precipitation, temperature, humidity,

geopotential, wind, etc.
|

Dynamical downscaling (RCMs):
[

~ 250 km

e GCMs to drive regional models (5r50km) determining atmosphere dynamics

o Requires a lot of computer time arld resources => Limited applications

\/
Region, city,
fields, station

¥
Local variables (e.g., precip., temp.)

(small scale water cycle, impacts — crops, resources — etc.)




Introduction

How to downscale?: The basics

Coarse atmospheric data
Precipitation, temperature, humidity,

geopotential, wind, etc.
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Dynamical downscaling (RCMs):
[

~ 250 km

o GCMs to drive regional models (5r50km) determining atmosphere dynamics

e Requires a lot of computer time arid resources => Limited applications
I

Statistical downscaling: :

e Based on statistical relationships between large- and local-scale variables

e Low costs and rapid simulations al:)plicable to any spatial resolution

e Uncertainties (results, propagation, etc)

¥
Local variables (e.g., precip., temp.)

\/
Region, city,
fields, station

(small scale water cycle, impacts — crops, resources — etc.)
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Main statistical approaches

Coarse atmospheric data
Precip., temp., humidity, geopot., wind, etc.
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Main statistical approaches

Coarse atmospheric data
Precip., temp., humidity, geopot., wind, etc.

Transfer functions

Linear | | Non-linear
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Main statistical approaches
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Coarse atmospheric data
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Main statistical approaches
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Main statistical approaches

Could also be RCM simulations...
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Main statistical approaches

Could also be RCM simulations...

Coarse atmospheric data
Precip., temp., humidity, geopot., wind, etc.
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Outline of the talk

e Two conditional SWGs for precipitation downscaling
e Some 1illustrations
e Inclusion of /Extension to extreme values distributions

e Conclusions & Perspectives
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Stochastic Weather Generators (WGS)

Principle: A WG is a stochastic model simulating daily weather

statistically similar to observations, based on parameters
determined by historical records (Wilks and Wilby, 1999).
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Stochastic Weather Generators (WGs)

Principle: A WG is a stochastic model simulating daily weather

statistically similar to observations, based on parameters
determined by historical records (Wilks and Wilby, 1999).

Introduction

—

. » The rainfall occurrence of foday is conditional on the one
Stochastic: | of yesterday => Historical key-tool = Markov Chains

» Simulations are performed according to pdfs

—

w —— (Qaussian
- r — Gamma

> = -

z A For rain intensity, most of the WGs

A ST / simulate values in (0,+o0) according to a
S J = L The—— Gamma distribution (here in green)

-20 D 10 20 30 40
Histo of observed precip. (mm/day)



“"Non-homogeneous” WGs
(i.e., SWGs for downscaling)

e Recently: WGs for downscaling: large-scale info is included

> Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
> Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)
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“"Non-homogeneous” WGs
(i.e., SWGs for downscaling)

o Recently: WGs for downscaling: large-scale info is included

> Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
> Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)

= Non-stationary model (vrac et al., 2007; Carreau & Vrac, 2011, Wong et al., 2014):

Po, = P(Ot ‘Ot_l ,Xt) & PDF of intensity with parameters
/ cond’l on (=function of) large-scale data X,
| J

!

Large-scale info
(e.g., simulations, WR, statistics) f ( ‘0{ (Xt ))

Take-home story about Stochastic WGs:
Local-scale data are simulated from conditional pdf

= If X evolves with time => f(.|a(X)) evolves too
= Uncertainty assessment (e.g., Semenov, 2007)




VGLM & NN-CMM

Vector Generalized Linear Model - Neural Network — Conditional Mixture Model

Precipitation pd:f (at one station)

B(yw) = (1- )8, () +ap, (:¢,)

o J/

M g
no rain rain>0

Parameters are fonctions
of (atmospheric, etc.) predictors
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Wong et al. (2014, J. of Climate)
Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)




[ustrations | Conclusions & Persp.

Introduction

VGLM &

Vector Generalized Linear Model

NN-CMM

- Neural Network — Conditional Mixture Model

Precipitation pd:f (at one station)

.

¢(y;7/}) = (1_05)50()’2"'?@0 (y;WO)

v

~~
no rain

.V
rain>0

Parameters are fonctions
of (atmospheric, etc.) predictors
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Wong et al. (2014, J. of Climate)
Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)




[ustrations | Conclusions & Persp.

Introduction

VGLM &

Vector Generalized Linear Model

NN-CMM

- Neural Network — Conditional Mixture Model

Precipitation pd:f (at one station)

.

¢(y;7/}) = (1_05)50()’2"'?@0 (y;WO)

v

~~
no rain

.V
rain>0

Parameters are fonctions
of (atmospheric, etc.) predictors

Koy @0
GLM
Y, (Xt,st)

Wong et al. (2014, J. of Climate)
Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)




[ustrations | Conclusions & Persp.

Introduction

VGLM &

Vector Generalized Linear Model

NN-CMM

- Neural Network — Conditional Mixture Model

Precipitation pd:f (at one station)

.

¢(y;7/}) = (1_05)50()’2"'?@0 (y;WO)

v

~~
no rain

.V
rain>0

Parameters are fonctions
of (atmospheric, etc.) predictors

Kp—au “Ue
GLM
Y, (Xt,st)

Wong et al. (2014, J. of Climate)
Eden et al. (2014, JGR, in press)

OC(Xt,Sl‘)
Y, (Xt,st)

ANN
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VGLM

Vector Generalized Linear Model

&

NN-CMM

- Neural Network — Conditional Mixture Model

Precipitation pd:f (at one station)

¢(y;lll) = gl_a)éo(yz‘*fx% (y;WOE

no rain

.V
rain>0

Parameters are fonctions
of (atmospheric, etc.) predictors

Kp—au “Ue
GLM
Y, (Xt,st)

O{(Xt,st) M
o (X, 57)

Same philosophy,
different implementations

Wong et al. (2014, J. of Climate)
Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)




The modelling part of NN-CMM

e Precipitation probability density function (One station):
¢(y;l/}i) = (1 - ai)éo(y) +a,, (y;wO,i)

For one station i
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The modelling part of NN-CMM

e Precipitation probability density function (N Stations):

by x 4= TI[#(viw(X)]
= I:I[(l —Q, (Xt))éO (yi ) + (ai (Xt)¢0 (yi W0 (Xt)))]

7]
@
=
<

Q
S
7!
(Q\




7]
@
=
<

Q
S
7!
(Q\

The modelling part of NN-CMM

e Precipitation probability density function (N Stations):

¢Yt‘Xt(y>=1f1[¢(y,.;wi<xt>)]

~~—_——’

—



7]
@,
=
<=

Q
2
A
o\

The modelling part of NN-CMM

e Precipitation probability density function (N Stations):

by x (4= TI[#(viw(X)]

— - gy,
- =~ ~

=Ii]j[(1—ai(X[))5o()’i) ( ( ’)ﬂ%(y %( )D]

~~————’




7]
@,
=
<=

Q
2
A
o\

The modelling part of NN-CMM

e Precipitation probability density function (N Stations):

By V)= TI[# (39, (X.)]

i=1

~

=~ - ——’
e e mm = ===

» Gaussian
or

f — 4 » Log-Normal
or

» Hybrid Pareto

—

v Carreau & Vrac (2011)

v, Carreau & Bengio (2009a,b)



The modelling part of NN-CMM

e Precipitation probability density function (N Stations):

by x (4= TI[#(viw(X)]
= 1[0 -c1 %)) o)+ 068 (v, (X))

~~————’

Mm_—==——"""===o__
][p]()(t)]f()gézwz()(t)):>
i
S -
= >
2
z f = 4 » Log-Normal
>

v Carreau & Vrac (2011)

v, Carreau & Bengio (2009a,b)



The modelling part of VGLM

e Precipitation probability density function (One station):
¢(y;l/}i) = (1 - ai)éo(y) +a,, (y;wO,i)
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The modelling part of VGLM

e Precipitation probability density function (N stations):

By V)= TI[# (39, (X,)]

i=1

with ¢, (Xt) _ Logistic regression(Xt)
~ exp(Xt ')Ll.)
) l+exp(X,'A)




The modelling part of VGLM

e Precipitation probability density function (N stations):

By V)= TI[# (39, (X,)]

i=1

[ustrations | Conclusions & Persp.

with o, (Xt) = Logistic regression(Xt) /
~ exp(X,'A,) !
l+exp(X,'A,) !

v

——--
- ‘\

s N
I _ .
and \q\bo = Gamma pdf'with parameters

-~y -
~—_——’

X ki(Xt)=aO+a1X1+...+apo=aO+AXt
wo’i( )= B(X,)=b,+bX, +..+b X =b,+BX,

Introduction
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Illustration 1: Daily pdfs with NN-CMM-2L

from Carreau and Vrac (2011)
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Illustration 1: Daily pdfs with NN-CMM-2L
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Illustration 1: Daily pdfs with NN-CMM-2L

from Carreau and Vrac (2011)
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I[llustration 2: VGLM-Gamma

from Eden et al. (2014)

Observations: 465 UK stations with daily PR in 1961-2000 from the
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Meteorological Office Integrated Data Archive System (MIDAYS)
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Meteorological Office Integrated Data Archive System (MIDAYS)

Predictors = 3x3 grid-cells average precipitation
from 2 RCMs (driven by ERA-40):

» COSMO-CLM: spectrally-nudged simulations, 18x18 km
(Geyer and Rockel, 2013; Geyer, 2014)

» KNMI-RACMOZ2: no-nudging, 25x25 km
(van Meijgaard et al., 2008)
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Observations: 465 UK stations with daily PR in 1961-2000 from the
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Meteorological Office Integrated Data Archive System (MIDAYS)

Predictors = 3x3 grid-cells average precipitation
from 2 RCMs (driven by ERA-40):

» COSMO-CLM: spectrally-nudged simulations, 18x18 km
(Geyer and Rockel, 2013; Geyer, 2014)

» KNMI-RACMO2: no-nudging, 25x25 km
(van Meijgaard et al., 2008)

4-fold cross-validation: Calibration=30 yrs ; Projection=10yrs
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Illustration 2a: Brier skill scores for VGLM-I

from Eden et al. (2014)
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Proba(rain)
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BS,

Stationary climatology

BSS = Improvement of the model to make accurate probabilistic predictions
(here, rain occurrence), with respect to a reference model




Illustration 2b: Quantile skill scores for VGLM-I
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0S, quantifies the capability of the model to predict
quantiles associated to a specific probability p.




Illustration 2b: Quantile skill scores for VGLM-I

Ilustrations

from Eden et al. (2014)

oS,
QS p.ref

0SS, =1-

0SS, = the increase (or decrease) of the capability of the model to
predict quantiles associated to a specific probability p, with respect
to a reference model.

T
where QS = EPP(Ot -q,(X,))
=1

pu foru=0

A i(l? -lu  foru<O0

0S, quantifies the capability of the model to predict
quantiles associated to a specific probability p.
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Meteorological Office Integrated Data Archive System (MIDAYS)

Predictors = 3x3 grid-cells average precipitation
from 2 RCMs (driven by ERA-40):

» COSMO-CLM: spectrally-nudged simulations, 18x18 km
(Geyer and Rockel, 2013; Geyer, 2014)

» KNMI-RACMOZ2: no-nudging, 25x25 km
(van Meijgaard et al., 2008)

4-fold cross-validation: Calibration=30 yrs ; Projection=10yrs




Illustration 2: VGLM-Gamma

from Eden et al. (2014)

Observations: 465 UK stations with daily PR in 1961-2000 from the

Ilustrations

Meteorological Office Integrated Data Archive System (MIDAYS)

Predictors = precipitation
from 1 GCM (driven by ERA-40):
>
>

» ECHAMS: nudged simulations, ~200x150 km (T63)
(Eden et al., 2012)

4-fold cross-validation: Calibration=30 yrs ; Projection=10yrs
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Illustration 2b: Quantile skill scores for VGLM-T

from Eden et al. (2014)
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e Many (and many) models and applications of downscaling
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> Non-stationarity ( A the SWGs should not explode A )
> Applying Stochastic WGs to GCMs may be better than to RCMs
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> My favorite ones:

v Stochastic WGs: cond’l event-wise variability/uncertainty
v MOS'/ Bias correction: DS of CDFs from CDFs

e RCMs vs. SDMs: Not a conflict == complementary approaches
= Very good illustration of that in Aurélien’s talk (next talk)

e There 1s not one good SDM for all variables and regions
= Different skills according to regions/variables/applications, etc.

= Use ensembles 1f possible!




Commercial break (well, it's free)

e R packages developed for Stochastic downscaling & BC:
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» NHMixt (Vrac & Naveau, 2007, Wong et al., 2014)
v Statistical mixture model Gamma & GPD

v Inclusion of covariates

v 2D-extension in progress

. http://www.r-project.org
» condmixt (Carreau & Vrac etal., 2011) Or my website

v ANN-Conditional mixture model

v" Various distributions (Gaussian, Log-N, hybrid Pareto)

> Other R packages available for non-WGs downscaling




Still work to do...

“There is a fine line between wrong and visionary. Unfortunately, you have to be a visionary to see it.”
Dr. Sheldon Cooper (The Big Bang Theory)
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e SDMs are often univariate (although covariates):
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= Needs for inter-sites models (stations or grid-cells - PLEIADES)
?  Latent (i.e. cond’l ind.)? Or Complete dependence structure?
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= Needs for inter-sites models (stations or grid-cells - PLEIADES)
?  Latent (i.e. cond’l ind.)? Or Complete dependence structure?

= Needs for inter-variables models (b/ climate variables — CELLO)
2 MOS ? SWGs?

Needs for spatial models: SD even at locations where no
2 Continuous spatial processes? Inter/Extra-polation of parameters?

Especially for dependence of extremes (ANR McSIM)

!

Goal of Auré¢lien’s work: next talk!




ANOTHER UNSETTLING DEVELOPMENT ON
THE UNSETTLED #EARHER-FRONT

STOCHASTIC
DOWNSCALING

© Creators Syndicate

Thank you...







Main (implicit) assumptions of SDM

For calibration under (near-) present climate:

> Al: localscale= f (largc scale, regional characteristics)

> F1: We need local-scale data!!!

Using SDMs under climate change:

> A2: The predictors are relevant and realistically modeled by GCM
> A3: The predictors fully represent the climate change signal

» A4: The SDM is valid also under altered climatic conditions




SWG and MOS

Common point:
Look for the distribution (pdf) of the phenomena/variables of interest

-
x

One statistical climatology point of view
(Climate # meteorological events)



Meteorology # Climate

e Statistics:
I realization vs. its random variable

| . iy 1
1 I
P i
e ol )
v -
e = 4
..'i El .'i
M H EEr
HH B
o aiagl
[ =]
J 1]
I
' Ca

Main thread of SWG and MOS (at least in my work):
What we need 1s the pdf or CDF describing the climate variables




Extremes

VGLM-Gamma: not always suited... for extremes
From Wong et al. (2014)
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QQ plots of wet day intensities (mm/day) for nine example gages in Summer (JJA).
(Values have been standardized to stationary gamma distribution fitted to observed wet day intensities)

Black triangles: VGLM-TI'.



DS of extremes

Peaks over threshold (POT):
Generalized Pareto Distribution (GPD)

e Not simply values higher than the threshold but excesses

V1

> Excess V' of the variable Z above threshold « is defined
as Z-u, given that Z>u :

V=Z-u|Z>u

> EVT: If u 1s large enough, F (v) can be approximated
by the Generalized Pareto Distribution (GPD)

P(Z—usy|Z>u)=1—(1+

gy

|
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v u = selected threshold
v o0, = scale parameter (>0)
v £ = shape parameter



DS of extremes

Peaks over threshold (POT):
Generalized Pareto Distribution (GPD)

e Not simply values higher than the threshold but excesses

> Excess V' of the variable Z above threshold « is defined
as Z-u, given that Z>u : V=Z-u|Z>u

> EVT: If u 1s large enough, F (v) can be approximated
by the Generalized Pareto Distribution (GPD)

Ry v u = selected threshold
P(Z-u=< y|Z >u)=1- (1 + Q) v o0, = scale parameter (>0)
o
S v' £ = shape parameter

e £ <0=>bounded tail (e.g., from uniform, Weibull, Beta)
e = (0=>light tail (e.g., from exponential, Gaussian, Gumbel)
e > (0=> heavy tail (e.g., from Fréchet, Student t, Cauchy)
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Merging classical and EV distributions

e Based on Frigessi et al. (2002):

“Dynamic mixture model for unsupervised tail estimation without threshold”

Gamma pdf

A
r N

o (o1o) =, [ (1= w (7)) T (51 2)

/ +w(y|m,1:)\GPD(y ,O, =/)]
/ Generali?&l Pareto

functional Distribution (GPD) pdf
weight

Z I 1

y—m Value where transition
with (y |m ’L’) = — 4+ —arctan from I" to GPD
2 T

Transition rate

Vrac & Naveau (2007, WRR)




Extremes

VGLM-mixture model: improving the extremes
From Wong et al. (2014)
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(Values have been standardized to stationary gamma distribution fitted to observed wet day intensities)

Black triangles: VGLM-TI'.



Extremes

VGLM-mixture model: improving the extremes
From Wong et al. (2014)
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DS of extremes
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AIC (DJF)
Rain gage Stationary mixture VGLM gamma VGLM mixture

Kinlochewe 15650 14855 14905
Balmoral 7786 7704 7701
Blyth Bridge 8129 8040 8054
Belfast 7963 7792 7803
Anglesey 9024 8861 8875
Sheffield 7718 7638 7640
Bude 8958 8865 8889
Cambridge 4845 4821 4825
Hastings 6712 6605 6626
AIC (JJA)
Station Mixture VGLM gamma VGLM mixture
Kinlochewe (Src. Id. 66) 10391 10167 10170
Balmoral (Sre. Id. 148) 5691 5754 5691
Blyth Bridge (Src. Id. 274) 7084 7036 7038
Belfast (Src. Id. 16374) 6211 6201 6163
Anglesey (Sre. Id. 11463) 6493 6428 6428
Sheffield (Srec. Id. 525) 5589 5581 5549
Bude (Sre. Id. 1418) 6084 6044 6016
Cambridge (Sre. Id. 454) 4871 4902 4847

Hastings(Src. Id. 818) 4700 4700 4673




