

Conditional Stochastic Weather Generators for precipitation downscaling

Mathieu Vrac

Joint works with: Many people... (J. Carreau, J. Eden, D. Maraun, M. Widmann, G. Wong, etc.)

SWGEN2014 Workshop Avignon, September, 16-19, 2014

ustrations

WGs

Stoch.

ntroduction

Motivations

- 30% of the world economic activities are affected by meteorological conditions (source: IPCC)
- **IPCC** scenarios of climate change have a **coarse spatial resolution** !! Not adapted to ecological, social, economic scales of impact studies
 - Social, environmental and economic impacts: water resources, hydrology, agriculture, air pollution, human health, etc.
 - How will <u>climate change</u> interact with existing environmental features at a <u>regional/local scale</u>?

• Downscaling:

To derive **sub-grid scale** (regional or local) weather or **climate** using General Circulation Models (GCMs) outputs or reanalysis data (e.g. NCEP)

How to downscale?: The basics

≈ 250 km

Coarse atmospheric data

Precipitation, temperature, humidity, geopotential, wind, etc.

- **Dynamical** downscaling (RCMs):
- GCMs to drive regional models (5-50km) determining atmosphere dynamics
- Requires a lot of computer time and resources => Limited applications

Region, city, fields, station

Local variables (e.g., precip., temp.)

(small scale water cycle, impacts – crops, resources – etc.)

How to downscale?: The basics

≈ 250 km

Coarse atmospheric data

Precipitation, temperature, humidity, geopotential, wind, etc.

- **Dynamical** downscaling (RCMs):
- GCMs to drive regional models (5-50km) determining atmosphere dynamics
- Requires a lot of computer time and resources => Limited applications

Statistical downscaling:

- Based on statistical relationships between large- and local-scale variables
- Low costs and rapid simulations applicable to any spatial resolution
- Uncertainties (results, propagation, etc)

Region, city, fields, station

Local variables (e.g., precip., temp.)

(small scale water cycle, impacts – crops, resources – etc.)

Main statistical approaches

Coarse atmospheric data

Precip., temp., humidity, geopot., wind, etc.

Local variables (e.g., precip., temp.)

(small scale water cycle, impacts – crops, resources – etc.)

Main statistical approaches

Main statistical approaches

Conclusions & Persp. Main statistical approaches Could also be RCM simulations... **Coarse atmospheric data** Precip., temp., humidity, geopot., wind, etc. Illustrations Stoch.Weather MOS/bias correct. Transfer functions Clustering Generators Stoch. WGs Weather Line Non-Inear Analogues Stat. Non-stat. mapping voing Local variables (e.g., precip., temp.) Introduction (small scale water cycle, impacts – crops, resources – etc.)

Outline of the talk

- Two conditional SWGs for precipitation downscaling
- Some illustrations
- Inclusion of /Extension to extreme values distributions
- Conclusions & Perspectives

Outline of the talk

- Two conditional SWGs for precipitation downscaling
- Some illustrations
- Inclusion of /Extension to extreme values distributions
- Conclusions & Perspectives

Stochastic Weather Generators (WGs)

<u>Principle</u>: A WG is a stochastic model simulating daily weather statistically similar to observations, based on parameters determined by historical records (Wilks and Wilby, 1999).

Stochastic Weather Generators (WGs)

<u>Principle</u>: A WG is a stochastic model simulating daily weather statistically similar to observations, based on parameters determined by historical records (Wilks and Wilby, 1999).

Stochastic:
Stochastic:
The rainfall occurrence of *today* is conditional on the one of *yesterday* => Historical key-tool = Markov Chains
Simulations are performed according to pdfs

Stochastic Weather Generators (WGs)

<u>Principle</u>: A WG is a stochastic model simulating daily weather statistically similar to observations, based on parameters determined by historical records (Wilks and Wilby, 1999).

Stochastic:

The rainfall occurrence of *today* is conditional on the one of *yesterday* => Historical key-tool = Markov Chains
Simulations are performed according to pdfs

For rain intensity, most of the WGs simulate values in $(0,+\infty)$ according to a Gamma distribution (here in green)

Illustrations Introduction

Conclusions & Persp.

- <u>Recently</u>: WGs for downscaling: large-scale info is included
 - Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
 - > Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)

- <u>Recently</u>: WGs for downscaling: **large-scale info is included**
- > Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
- > Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)
- ⇒ Non-stationary model (Vrac et al., 2007; Carreau & Vrac, 2011, Wong et al., 2014):

$$Po_t = P(O_t | O_{t-1}, X_t)$$

Large-scale info (e.g., simulations, WR, statistics)

- Recently: WGs for downscaling: large-scale info is included
- > Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
- Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)
- ⇒ Non-stationary model (Vrac et al., 2007; Carreau & Vrac, 2011, Wong et al., 2014):

$$Po_t = P(O_t | O_{t-1}, X_t)$$

& PDF of intensity with parameters cond'l on (=function of) large-scale data X_t

Large-scale info (e.g., simulations, WR, statistics)

 $f(.|\alpha(X_t))$

- <u>Recently</u>: WGs for downscaling: large-scale info is included
- > Pryor et al. (2006) for wind: Weibull param. = GLM(GCM features)
- > Furrer & Katz (2007) for prec: Gamma param. = GLM(GCM data)
- ⇒ Non-stationary model (Vrac et al., 2007; Carreau & Vrac, 2011, Wong et al., 2014):

 $Po_t = P(O_t | O_{t-1}, X_t)$ & PDF of intensity with parameters cond'l on (=function of) large-scale data X_t

Large-scale info (e.g., simulations, WR, statistics)

 $f(.|\alpha(X_t))$

Take-home story about Stochastic WGs: Local-scale data are **simulated from** <u>conditional</u> pdf

 \Rightarrow If X evolves with time $=> f(.|\alpha(X))$ evolves too

 \Rightarrow Uncertainty assessment (e.g., Semenov, 2007)

VGLM & NN-CMM

Vector Generalized Linear Model

Neural Network – Conditional Mixture Model

Precipitation pdf (at one station)

Parameters are fonctions of (atmospheric, etc.) predictors

Wong et al. (2014, J. of Climate) Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)

VGLM & NN-CMM

Vector Generalized Linear Model

Conclusions & Persp.

Illustrations

Stock

Introduction

Neural Network – Conditional Mixture Model

Precipitation pdf (at one station) $\phi(y;\psi) = \underbrace{(1-\alpha)\delta_0(y)}_{\text{no rain}} + \underbrace{\alpha\phi_0(y;\psi_0)}_{\text{rain}>0}$

Parameters are fonctions of (atmospheric, etc.) predictors

Wong et al. (2014, J. of Climate) Eden et al. (2014, JGR, in press)

Carreau & Vrac (2011, WRR)

VGLM & NN-CMM

Vector Generalized Linear Model

Neural Network – Conditional Mixture Model

rain>0

Precipitation pdf (at one station) $\phi(y;\psi) = (1-\alpha)\delta_0(y) + \alpha\phi_0(y;\psi_0)$

GI

Parameters are fonctions of (atmospheric, etc.) predictors

no rain

Wong et al. (2014, J. of Climate) Eden et al. (2014, JGR, in press)

 $\overbrace{\mathsf{GLM}}^{\bullet} \begin{array}{c} \alpha(\mathbf{X}_t, st) \\ \checkmark \end{array} \psi_0(\mathbf{X}_t, st) \end{array}$

Carreau & Vrac (2011, WRR)

• <u>Precipitation probability density function</u> (One station):

$$\phi(y;\psi_i) = (1-\alpha_i)\delta_0(y) + \alpha_i\phi_0(y;\psi_{0,i})$$

For one station *i*

$$\boldsymbol{\phi}_{\mathbf{Y}_{t}|\mathbf{X}_{t}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi} \left(y_{i}; \boldsymbol{\psi}_{i} \left(\mathbf{X}_{t} \right) \right) \right]$$
$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i} \left(\mathbf{X}_{t} \right) \right) \delta_{0} \left(y_{i} \right) + \left(\alpha_{i} \left(\mathbf{X}_{t} \right) \boldsymbol{\phi}_{0} \left(y_{i}; \boldsymbol{\psi}_{0,i} \left(\mathbf{X}_{t} \right) \right) \right) \right]$$

$$\boldsymbol{\phi}_{\mathbf{Y}_{t}|\mathbf{X}_{t}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi}\left(y_{i}; \boldsymbol{\psi}_{i}\left(\mathbf{X}_{t}\right)\right) \right]$$

$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i}\left(\mathbf{X}_{t}\right)\right) \delta_{0}\left(y_{i}\right) + \left(\alpha_{i}\left(\mathbf{X}_{t}\right)\right) \boldsymbol{\phi}_{0}\left(y_{i}; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \right) \right]$$

$$\text{with} \quad \boldsymbol{\phi}_{0}\left(y; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \neq \sum_{j=1}^{m} \pi_{i,j}\left(\mathbf{X}_{t}\right) f\left(y; \boldsymbol{\theta}_{i,j}\left(\mathbf{X}_{t}\right)\right) \right)$$

$$\boldsymbol{\phi}_{\mathbf{Y}_{i}|\mathbf{X}_{i}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi}\left(y_{i}; \boldsymbol{\psi}_{i}\left(\mathbf{X}_{t}\right)\right) \right]$$

$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i}\left(\mathbf{X}_{t}\right)\right) \delta_{0}\left(y_{i}\right) + \left(\alpha_{i}\left(\mathbf{X}_{t}\right) \boldsymbol{\phi}_{0}\left(y_{i}; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right)\right) \right]$$

$$\text{with} \quad \boldsymbol{\phi}_{0}\left(y; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \neq \sum_{j=1}^{m} \pi_{i,j}\left(\mathbf{X}_{t}\right) f\left(y; \boldsymbol{\theta}_{i,j}\left(\mathbf{X}_{t}\right)\right) \right)$$

$$\psi_{i}(\mathbf{x}) = \left(\alpha_{i}(\mathbf{x}), \left(\pi_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}, \left(\theta_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}\right)$$

$$\boldsymbol{\phi}_{\mathbf{Y}_{t}|\mathbf{X}_{t}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi}\left(y_{i}; \boldsymbol{\psi}_{i}\left(\mathbf{X}_{t}\right)\right) \right]$$

$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i}\left(\mathbf{X}_{t}\right)\right) \delta_{0}\left(y_{i}\right) + \left(\alpha_{i}\left(\mathbf{X}_{t}\right) \boldsymbol{\phi}_{0}\left(y_{i}; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right)\right) \right]$$

$$\text{with} \quad \boldsymbol{\phi}_{0}\left(y; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \neq \sum_{j=1}^{m} \pi_{i,j}\left(\mathbf{X}_{t}\right) f\left(y; \boldsymbol{\theta}_{i,j}\left(\mathbf{X}_{t}\right)\right) \right)$$

$$\psi_{i}(\mathbf{x}) = \left(\alpha_{i}(\mathbf{x}), \left(\pi_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}, \left(\theta_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}\right)$$

$$\int_{x_{1}} \frac{1}{\sqrt{1-x_{1}}} \frac{1}{\sqrt$$

$$\boldsymbol{\phi}_{\mathbf{Y}_{i}|\mathbf{X}_{i}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi}\left(y_{i}; \boldsymbol{\psi}_{i}\left(\mathbf{X}_{t}\right)\right) \right]$$

$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i}\left(\mathbf{X}_{t}\right)\right) \delta_{0}\left(y_{i}\right) + \left(\alpha_{i}\left(\mathbf{X}_{t}\right)\right) \boldsymbol{\phi}_{0}\left(y_{i}; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \right) \right]$$

$$\text{with} \quad \boldsymbol{\phi}_{0}\left(y; \boldsymbol{\psi}_{0,i}\left(\mathbf{X}_{t}\right)\right) \neq \sum_{j=1}^{m} \pi_{i,j}\left(\mathbf{X}_{t}\right) f\left(y; \boldsymbol{\theta}_{i,j}\left(\mathbf{X}_{t}\right)\right) \right)$$

$$\psi_{i}(\mathbf{x}) = \left(\alpha_{i}(\mathbf{x}), \left(\pi_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}, \left(\theta_{i,j}(\mathbf{x})\right)_{j=1,\dots,m}\right)$$

$$\int_{x_{1}} \frac{1}{\sqrt{1-x_{1}}} \frac{1}{\sqrt{1-x_{2}}} \frac{1}{\sqrt{1-x_{2}}}} \frac{1}{\sqrt{1-x_{2}}} \frac{1}{\sqrt{1-x_{2}}} \frac{1}{\sqrt{1-x_{2}}} \frac{1}{$$

The modelling part of VGLM

• <u>Precipitation probability density function</u> (One station):

$$\phi(y;\psi_i) = (1-\alpha_i)\delta_0(y) + \alpha_i\phi_0(y;\psi_{0,i})$$

For one station *i*

The modelling part of VGLM

• <u>Precipitation probability density function</u> (N stations):

$$\boldsymbol{\phi}_{\mathbf{Y}_{t}|\mathbf{X}_{t}}(\mathbf{y}) = \prod_{i=1}^{N} \left[\boldsymbol{\phi} \left(y_{i}; \boldsymbol{\psi}_{i} \left(\mathbf{X}_{t} \right) \right) \right]$$
$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i} \left(\mathbf{X}_{t} \right) \right) \delta_{0} \left(y_{i} \right) + \left(\alpha_{i} \left(\mathbf{X}_{t} \right) \boldsymbol{\phi}_{0} \left(y_{i}; \boldsymbol{\psi}_{0,i} \left(\mathbf{X}_{t} \right) \right) \right) \right]$$

Introduction

The modelling part of VGLM

• <u>Precipitation probability density function</u> (N stations):

$$\mathbf{Y}_{t} | \mathbf{X}_{t} (\mathbf{y}) = \prod_{i=1}^{N} \left[\phi(\mathbf{y}_{i}; \psi_{i}(\mathbf{X}_{t})) \right]$$

$$= \prod_{i=1}^{N} \left[\left(1 - (\alpha_{i}(\mathbf{X}_{t})) \delta_{0}(\mathbf{y}_{i}) + (\alpha_{i}(\mathbf{X}_{t}) \phi_{0}(\mathbf{y}_{i}; \psi_{0,i}(\mathbf{X}_{t}))) \right] \right]$$

with $\alpha_{i} (\mathbf{X}_{t}) = Logistic \ regression(\mathbf{X}_{t})$

$$= \frac{\exp(\mathbf{X}_{t} ' \lambda_{i})}{1 + \exp(\mathbf{X}_{t} ' \lambda_{i})}$$

 ϕ
The modelling part of VGLM

• <u>Precipitation probability density function</u> (N stations):

$$\mathbf{Y}_{i}|\mathbf{X}_{t}(\mathbf{y}) = \prod_{i=1}^{N} \left[\phi(\mathbf{y}_{i}; \psi_{i}(\mathbf{X}_{t})) \right]$$
$$= \prod_{i=1}^{N} \left[\left(1 - \alpha_{i}(\mathbf{X}_{t})\right) \delta_{0}(\mathbf{y}_{i}) + \left(\alpha_{i}(\mathbf{X}_{t})\phi_{0}(\mathbf{y}_{i}; \psi_{0,i}(\mathbf{X}_{t}))\right) \right]$$
with $\alpha_{i}(\mathbf{X}_{t}) = Logistic \ regression(\mathbf{X}_{t})$
$$= \frac{\exp(\mathbf{X}_{t}'\lambda_{i})}{1 + \exp(\mathbf{X}_{t}'\lambda_{i})}$$

and $(\phi_0 = \text{Gamma pdf})$ with parameters

$$\boldsymbol{\Psi}_{O,i}(\mathbf{X}_{t}) = \begin{cases} k_{i}(\mathbf{X}_{t}) = a_{0} + a_{1}X_{1} + \dots + a_{p}X_{p} = a_{0} + \mathbf{A}\mathbf{X}_{t} \\ \beta_{i}(\mathbf{X}_{t}) = b_{0} + b_{1}X_{1} + \dots + b_{p}X_{p} = b_{0} + \mathbf{B}\mathbf{X}_{t} \end{cases}$$

 ϕ

<u>Illustration 1</u>: Daily pdfs with **NN-CMM**-2L

from Carreau and Vrac (2011)

Spell with the **highest** cum. vol. of rain

<u>Illustration 1</u>: Daily pdfs with **NN-CMM**-2L

from Carreau and Vrac (2011)

Illustrations

Conclusions & Persp.

Illustrations

2 Stoch. WGs

itroduction

Observations: 465 UK stations with daily PR in 1961-2000 from the Meteorological Office Integrated Data Archive System (MIDAS)

<u>Observations</u>: 465 UK stations with daily PR in 1961-2000 from the Meteorological Office Integrated Data Archive System (MIDAS)

 $\frac{\text{Predictors}}{\text{from 2 RCMs}} = 3x3 \text{ grid-cells average precipitation}$

COSMO-CLM: spectrally-nudged simulations, 18x18 km (Geyer and Rockel, 2013; Geyer, 2014)

KNMI-RACMO2: no-nudging, 25x25 km

(van Meijgaard et al., 2008)

Observations: 465 UK stations with daily PR in 1961-2000 from the Meteorological Office Integrated Data Archive System (MIDAS)

Predictors = 3x3 grid-cells average precipitation from 2 RCMs (driven by ERA-40):

COSMO-CLM: spectrally-nudged simulations, 18x18 km (Geyer and Rockel, 2013; Geyer, 2014)

KNMI-RACMO2: no-nudging, 25x25 km (van Meijgaard et al., 2008)

4-fold cross-validation: Calibration=30 yrs; Projection=10yrs

Brier skill scores (1961-2000) for VGLM-G fitted on PR from RACMO2 and CCLM for winter (DJF) and summer (JJA)

BSS = Improvement of the model to make accurate probabilistic predictions (here, rain occurrence), with respect to a reference model

llustrations

Introduction

from Eden et al. (2014)

$$QSS_p = 1 - \frac{QS_p}{QS_{p,ref}}$$

where
$$QS_p = \sum_{t=1}^{T} \rho_p(o_t - q_p(X_t))$$

with $\rho_p(u) = \begin{cases} pu & \text{for } u \ge 0\\ (p-1)u & \text{for } u < 0 \end{cases}$

from Eden et al. (2014)

$$QSS_p = 1 - \frac{QS_p}{QS_{p,ref}}$$

where
$$QS_p = \sum_{t=1}^{T} \rho_p (o_t - q_p(X_t))$$

with $\rho_p(u) = \begin{cases} pu & for \ u \ge 0\\ (p-1)u & for \ u < 0 \end{cases}$

 QS_p quantifies the capability of the model to predict quantiles associated to a specific probability p.

from Eden et al. (2014)

$$QSS_p = 1 - \frac{QS_p}{QS_{p,ref}}$$

 QSS_p = the increase (or decrease) of the capability of the model to predict quantiles associated to a specific probability p, with respect to a reference model.

where
$$QS_p = \sum_{t=1}^{T} \rho_p(o_t - q_p(X_t))$$

with $\rho_p(u) = \begin{cases} pu & for \ u \ge 0\\ (p-1)u & for \ u < 0 \end{cases}$

 QS_p quantifies the capability of the model to predict quantiles associated to a specific probability p.

from Eden et al. (2014)

 $QSS_p = 1 - \frac{QS_p}{QS_{p,ref}}$

Illustrations

Introduction

skill

<u>Observations</u>: 465 UK stations with daily PR in 1961-2000 from the Meteorological Office Integrated Data Archive System (MIDAS)

 $\frac{\text{Predictors}}{\text{from 2 RCMs}} = 3x3 \text{ grid-cells average precipitation}$

COSMO-CLM: spectrally-nudged simulations, 18x18 km (Geyer and Rockel, 2013; Geyer, 2014)

KNMI-RACMO2: no-nudging, 25x25 km (van Meijgaard et al., 2008)

<u>4-fold cross-validation</u>: Calibration=30 yrs ; Projection=10yrs

<u>Observations</u>: 465 UK stations with daily PR in 1961-2000 from the Meteorological Office Integrated Data Archive System (MIDAS)

 $\frac{\text{Predictors}}{\text{from 2 RCMs and } \frac{1 \text{ GCM}}{1 \text{ GCM}} (\text{driven by ERA-40}):$

COSMO-CLM: spectrally-nudged simulations, 18x18 km (Geyer and Rockel, 2013; Geyer, 2014)

KNMI-RACMO2: no-nudging, 25x25 km (van Meijgaard et al., 2008)

ECHAM5: nudged simulations, ~200x150 km (T63) (Eden et al., 2012)

<u>4-fold cross-validation</u>: Calibration=30 yrs ; Projection=10yrs

Brier skill scores (1961-2000) for VGLM-G fitted on PR from RACMO2 and CCLM for winter (DJF) and summer (JJA)

from Eden et al. (2014)

Introduction

Quantile skill scores for VGLM-Γ fitted on PR from **RACMO2** and **CCLM** for winter (DJF) 1961-2000.

Conclusions & Persp

Illustrations

2 Stoch. WGs

Quantile skill

 Γ fitted on PR

ECHAM5 for

winter (DJF)

1961-2000.

- Many (and many) models and applications of downscaling
 - Choice of the predictors is a major issue in Stat. DS
 - > Non-stationarity (\bigwedge the SWGs should not explode \bigwedge)
 - Applying Stochastic WGs to GCMs may be better than to RCMs

- Many (and many) models and applications of downscaling
 - Choice of the predictors is a major issue in Stat. DS
 - > Non-stationarity (\bigwedge the SWGs should not explode \bigwedge)
 - > Applying Stochastic WGs to GCMs *may be* better than to RCMs
 - My favorite ones:
 - ✓ *Stochastic WGs*: cond'l event-wise variability/uncertainty
 - ✓ *MOS / Bias correction*: DS of CDFs from CDFs

- Many (and many) models and applications of downscaling
 - Choice of the predictors is a major issue in Stat. DS
 - > Non-stationarity (\bigwedge the SWGs should not explode \bigwedge)
 - > Applying Stochastic WGs to GCMs *may be* better than to RCMs
 - My favorite ones:
 - ✓ *Stochastic WGs*: cond'l event-wise variability/uncertainty
 - ✓ *MOS / Bias correction*: DS of CDFs from CDFs
- **RCMs vs. SDMs**: Not a conflict => complementary approaches
 - ⇒ Very good illustration of that in Aurélien's talk (next talk)

- Many (and many) models and applications of downscaling
 - Choice of the predictors is a major issue in Stat. DS
 - > Non-stationarity (\bigwedge the SWGs should not explode \bigwedge)
 - > Applying Stochastic WGs to GCMs *may be* better than to RCMs
 - My favorite ones:
 - ✓ *Stochastic WGs*: cond'l event-wise variability/uncertainty
 - ✓ *MOS / Bias correction*: DS of CDFs from CDFs
- **RCMs vs. SDMs**: Not a conflict => complementary approaches
 - ⇒ Very good illustration of that in Aurélien's talk (next talk)
- There is not one good SDM for all variables and regions
 - ⇒ Different skills according to regions/variables/applications, etc.
 - ⇒ Use ensembles if possible!

Commercial break (well, it's free)

• **R packages** developed for <u>Stochastic downscaling & BC</u>:

- NHMixt (Vrac & Naveau, 2007, Wong et al., 2014)
 - ✓ Statistical mixture model Gamma & GPD
 - Inclusion of covariates
 - ✓ 2D-extension in progress
- > condmixt (Carreau & Vrac et al., 2011)
 - ANN-Conditional mixture model
 - ✓ Various distributions (Gaussian, Log-N, hybrid Pareto)
- Other R packages available for non-WGs downscaling

http://www.r-project.org Or my website

- SDMs are often univariate (although covariates):
 - ⇒ Needs for inter-sites models (stations or grid-cells <u>PLEIADES</u>)
 - *Latent* (i.e. cond'l ind.)? Or *Complete* dependence structure?

- SDMs are often univariate (although covariates):
 - ⇒ Needs for inter-sites models (stations or grid-cells <u>PLEIADES</u>)
 - *Latent* (i.e. cond'l ind.)? Or *Complete* dependence structure?
 - ⇒ Needs for inter-variables models (b/ climate variables <u>CELLO</u>)
 ? MOS ? SWGs?

- SDMs are often univariate (although covariates):
 - ⇒ Needs for inter-sites models (stations or grid-cells <u>PLEIADES</u>)
 - *Latent* (i.e. cond'l ind.)? Or *Complete* dependence structure?
 - ⇒ Needs for inter-variables models (b/ climate variables <u>CELLO</u>)
 ? MOS ? SWGs?
 - \Rightarrow Needs for **spatial models**: SD even at locations where no data
 - ? Continuous spatial processes? Inter/Extra-polation of parameters?

- SDMs are often univariate (although covariates):
 - ⇒ Needs for inter-sites models (stations or grid-cells <u>PLEIADES</u>)
 - *Latent* (i.e. cond'l ind.)? Or *Complete* dependence structure?
 - ⇒ Needs for inter-variables models (b/ climate variables <u>CELLO</u>)
 ? MOS ? SWGs?
 - ⇒ Needs for **spatial models**: SD even at locations where no data
 - ? Continuous spatial processes? Inter/Extra-polation of parameters?
 - Especially for dependence of extremes (ANR <u>McSIM</u>)

"There is a fine line between wrong and visionary. Unfortunately, you have to be a visionary to see it." Dr. Sheldon Cooper (The Big Bang Theory)

- SDMs are often univariate (although covariates):
 - ⇒ Needs for inter-sites models (stations or grid-cells <u>PLEIADES</u>)
 - *Latent* (i.e. cond'l ind.)? Or *Complete* dependence structure?
 - ⇒ Needs for inter-variables models (b/ climate variables <u>CELLO</u>)
 - ? MOS ? SWGs?

Needs for spatial models: SD even at locations where no data

Continuous spatial processes? Inter/Extra-polation of parameters?

Especially for dependence of extremes (ANR McSIM)

Goal of Aurélien's work: next talk!

© Creators Syndicate.

Thank you...

Main (implicit) assumptions of SDM

For calibration under (near-) **present** climate:

> A1: local scale = f(large scale, regional characteristics)

➢ F1: We need local-scale data!!!

Using SDMs under climate change:

> A2: The predictors are relevant and realistically modeled by GCM

- > A3: The predictors fully represent the climate change signal
- > A4: The SDM is valid also under altered climatic conditions

SWG and MOS

Common point:

Look for the **distribution (pdf)** of the phenomena/variables of interest

One statistical climatology point of view (Climate ≠ meteorological events)

Meteorology *≠* Climate

• <u>Time</u>: ~1 week vs. 100 years

• <u>Dynamics</u>: 1 trajectory vs. the "attractor"

<u>Statistics</u>:
 1 realization vs. its random variable

Main thread of SWG and MOS (at least in my work):

What we need is the **pdf or CDF** describing the climate variables

QQ plots of wet day intensities (mm/day) for nine example gages in Summer (JJA). (Values have been standardized to stationary gamma distribution fitted to observed wet day intensities) **Black triangles: VGLM-Γ**.

 \sim
Peaks over threshold (POT): Generalized Pareto Distribution (GPD)

• Not simply values higher than the threshold but **excesses**

- > Excess *V* of the variable *Z* above threshold *u* is defined as *Z*-*u*, given that Z > u: V = Z - u | Z > u
- > EVT: If *u* is large enough, $F_u(v)$ can be approximated by the Generalized Pareto Distribution (GPD)

Perspectives

DS of extremes

Stochastic DS

Introduction

 \checkmark *u* = selected threshold

$$\sim \sigma_u = \text{scale parameter (>0)}$$

$$\checkmark \xi = \text{shape parameter}$$

Peaks over threshold (POT): Generalized Pareto Distribution (GPD)

• Not simply values higher than the threshold but **excesses**

- > Excess *V* of the variable *Z* above threshold *u* is defined as *Z*-*u*, given that Z > u: V = Z - u | Z > u
- > EVT: If *u* is large enough, $F_u(v)$ can be approximated by the Generalized Pareto Distribution (GPD)

$$P(Z - u \le y | Z > u) = 1 - \left(1 + \frac{\xi y}{\sigma_u}\right)_{+}^{-1/\xi}$$

$$\downarrow u = \text{selected threshold}$$

$$\downarrow \sigma_u = \text{scale parameter (>0)}$$

$$\downarrow \xi = \text{shape parameter}$$

$$\downarrow \xi = 0 \Rightarrow \text{bounded tail (e.g., from uniform, Weibull, Beta)}$$

$$\downarrow \xi = 0 \Rightarrow \text{light tail (e.g., from exponential, Gaussian, Gumbel)}$$

$$\downarrow \xi > 0 \Rightarrow \text{heavy tail (e.g., from Fréchet, Student t, Cauchy)}$$

Merging classical and EV distributions

• Based on Frigessi et al. (2002): "Dynamic mixture model for unsupervised tail estimation without threshold"

QQ plots of wet day intensities (mm/day) for nine example gages in Summer (JJA). (Values have been standardized to stationary gamma distribution fitted to observed wet day intensities) **Black triangles: VGLM-Γ**.

 \sim

QQ plots of wet day intensities (mm/day) for nine example gages in Summer (JJA). (Values have been standardized to stationary gamma distribution fitted to observed wet day intensities) Black triangles: VGLM-Γ. Blue circles: VGLM-mixture model.

 \sim

Rain gage	Stationary mixture	VGLM gamma	VGLM mixture
Kinlochewe	15650	14855	14905
Balmoral	7786	7704	7701
Blyth Bridge	8129	8040	8054
Belfast	7963	7792	7803
Anglesey	9024	8861	8875
Sheffield	7718	7638	7640
Bude	8958	8865	8889
Cambridge	4845	4821	4825
Hastings	6712	6605	6626

AIC (DJF)

AIC (JJA)

Station	Mixture	VGLM gamma	VGLM mixture
Kinlochewe (Src. Id. 66)	10391	10167	10170
Balmoral (Src. Id. 148)	5691	5754	5691
Blyth Bridge (Src. Id. 274)	7084	7036	7038
Belfast (Src. Id. 16374)	6211	6201	6163
Anglesey (Src. Id. 11463)	6493	6428	6428
Sheffield (Src. Id. 525)	5589	5581	5549
Bude (Src. Id. 1418)	6084	6044	6016
Cambridge (Src. Id. 454)	4871	4902	4847
Hastings(Src. Id. 818)	4700	4700	4673