On the simple and partial Mantel tests with spatial data

Gilles Guillot 1
Joint work with François Rousset 2

1Department of Informatics and Mathematical Modelling
Technical University of Denmark

2Institut des Sciences de l’Évolution
CNRS, Montpellier, France

May 2012
The (simple) Mantel test

The (simple) Mantel test

- **Goal:** "identifying subtle time-space clustering of disease, as may be occurring in leukemia"
- **Data:** \((x_i, y_i)_{i=1,...,n}\) observations of a space-time point process
- **Idea:**
 - transform data so as to get two univariate variables
 - compute correlation of transformed data
 - assess significance of correlation by some permutation method
The simple Mantel test: detailed algorithm

\[D_x = \left| x_i - x_j \right|, \quad i, j \]

\[D_y = \left| y_i - y_j \right|, \quad i, j \]

Compute the empirical correlation \(r \) between \(D_x \) and \(D_y \)

For \(\text{iter} = 1, N \)

1. Draw a random permutation \(\tau \) of \(1, \ldots, n \)
2. Compute \(D_x^\tau = \left| x_{\tau(i)} - x_{\tau(j)} \right| \)
3. Compute the empirical correlation \(r^\tau \) between \(D_x^\tau \) and \(D_y \)

If |\(r \)| larger than some quantile estimated from the \(r^\tau \) values:

Report that there is "subtle time-space clustering of disease"
The simple Mantel test: detailed algorithm

- Compute $D^x = (|x_i - x_j|)_{i,j}$ and $D^y = (|y_i - y_j|)_{i,j}$
- Compute the empirical correlation r between D^x and D^y
- For $\text{iter } = 1, N$
 - Draw a random permutation τ of $1, \ldots, n$
 - Compute $D^x_\tau = (|x_{\tau(i)} - x_{\tau(j)}|)_{i,j}$
 - Compute the empirical correlation r_τ between D^x_τ and D^y
- If $|r|$ larger than some quantile estimated from the r_τ values:
 report that there is “subtle time-space clustering of disease”
The partial Mantel test

\[x_i \text{ and } y_i \text{ observations of } p \text{ and } q \text{ variables for } n \text{ statistical units.} \]

Still attempts to assess the dependence between \(x \) and \(y \) need to "filter out" or "control for" the effect of a third variable \(z \) (e.g. \(z_i \) spatial coordinates of obs. \(i \)).
The partial Mantel test

The partial Mantel test

- x_i and y_i: observations of p and q variables for n statistical units.
- still attempts to assess the dependence between x and y
- need to “filter out” or “control for” the effect of a third variable z (e.g. z_i: spatial coordinates of obs. i)
The partial Mantel test: detailed algorithm

Compute $D_x = (|x_i - x_j|)_{i,j}$, $D_y = (|y_i - y_j|)_{i,j}$, and $D_z = (|z_i - z_j|)_{i,j}$.

Compute residuals \tilde{D}_x of linear regressions $D_x \sim D_z$.

Compute residuals \tilde{D}_y of linear regressions $D_y \sim D_z$.

Compute the empirical correlation r between \tilde{D}_x and \tilde{D}_y.

For $\text{iter} = 1, N$

1. draw a random permutation τ of $1, \ldots, n$.
2. compute \tilde{D}_x^τ as above for permuted x_i values.
3. compute the empirical correlation r^τ between \tilde{D}_x^τ and \tilde{D}_y.

 Assess significance of r by comparing to quantiles of r^τ.

G. Guillot (DTU) SSIAB 2012 May 2012 5 / 17
The partial Mantel test: detailed algorithm

- Compute $D^x = (|x_i - x_j|)_{i,j}$, $D^y = (|y_i - y_j|)_{i,j}$ and $D^z = (|z_i - z_j|)_{i,j}$
- Compute residuals \tilde{D}^x of linear regressions $D^x \sim D^z$
- Compute residuals \tilde{D}^y of linear regressions $D^y \sim D^z$
- Compute the empirical correlation r between \tilde{D}^x and \tilde{D}^y
- For iter = 1, N
 - draw a random permutation τ of 1, ..., n
 - compute \tilde{D}^x_τ as above for permuted x_i values
 - compute the empirical correlation r_τ between \tilde{D}^x_τ and \tilde{D}^y
- Assess significance of r by comparing to quantiles of r_τ.

G. Guillot (DTU)
SSIAB 2012
May 2012
5 / 17
Mantel put into orbit

Mantel (Cancer Res., 1967) and Sokal (Sys. Zool., 1979) claimed that the approach was general and could be used to assess dependence between matrices of “distance.”

Features of the method:
- deals with multivariate data
- synthetizes data into a single numerical value
- does not seem to rely on any distributional assumption
Mantel put into orbit

Mantel (Cancer Res., 1967) and Sokal (Sys. Zool., 1979) claimed that
- the approach was general
- could be used to assess dependence between matrices of "distance"
Mantel put into orbit

Mantel (Cancer Res., 1967) and Sokal (Sys. Zool., 1979) claimed that
- the approach was general
- could be used to assess dependence between matrices of ”distance”

Features of the method
- deals with multivariate data
- synthetize data into a single numerical value
- does not seem to rely on any distributional assumption
Posterity of Mantel’s work

Simple Mantel test [Mantel, 1967]:
\[\geq 5000 \text{ ISI citations} \]

Partial Mantel test [Smouse et al., 1986]:
\[\geq 1000 \text{ ISI citations} \]

Implemented in most ecology computer programs

Countless number of articles using the Mantel tests citing other supporting references

Routinely used in landscape genetics:
- genotypes,
- environmental variables,
- geographical coordinates

Practice strongly rooted:
Pr. XXX, Assoc. Editor J. of XXX:
"Referee 3 pointed out some issues with the Mantel tests but they are so widely used in landscape genetics that this comment can be disregarded."

G. Guillot (DTU)
SSIAB 2012 May 2012 7 / 17
Posterity of Mantel’s work

- Simple Mantel test [Mantel, 1967]: \(\geq 5000 \) ISI citations
- Partial Mantel test [Smouse et al., 1986]: \(\geq 1000 \) ISI citations
- Implemented in most ecology computer programs
- Countless number of articles using the Mantel tests citing other supporting references
- Routinely used in landscape genetics: \(x \) genotypes, \(y \) environmental variables, \(z \) geographical coordinates
- Practice strongly rooted:
Posterity of Mantel’s work

- Simple Mantel test [Mantel, 1967]: \(\geq 5000 \) ISI citations
- Partial Mantel test [Smouse et al., 1986]: \(\geq 1000 \) ISI citations
- Implemented in most ecology computer programs
- Countless number of articles using the Mantel tests citing other supporting references
- Routinely used in landscape genetics: \(\times \) genotypes, \(\times \) environmental variables, \(\times \) geographical coordinates
- Practice strongly rooted:

Pr. XXX, Assoc. Editor J. of XXX:
Posterity of Mantel’s work

- Simple Mantel test [Mantel, 1967]: ≥ 5000 ISI citations
- Partial Mantel test [Smouse et al., 1986]: ≥ 1000 ISI citations
- Implemented in most ecology computer programs
- Countless number of articles using the Mantel tests citing other supporting references
- Routinely used in landscape genetics: x genotypes, y environmental variables, z geographical coordinates
- Practice strongly rooted:

Pr. XXX, Assoc. Editor J. of XXX:

"Referee 3 pointed out some issues with the Mantel tests but they are so widely used in landscape genetics that this comment can be disregarded."
Is the Mantel test a statistical test?

What is a statistical test in Biology?

A method that returns a numerical value between 0 and 1. The lower the better.

More formal definition involves...

A null hypothesis

A method to derive a p-value

Some additional distributional assumptions
Is the Mantel test a statistical test?

What is a statistical test in Biology?
- A method that returns a numerical value between 0 and 1
- The lower the best
Is the Mantel test a statistical test?

What is a statistical test in Biology?
- A method that returns a numerical value between 0 and 1
- The lower the best

More formal definition involves...
- A null hypothesis
- A method to derive a p-value
- Some additional distributional assumptions
Are the Mantel tests appropriate?

A common implementation:

x_i multivariate genotype or phenotype. Due to population history and limited mixing in space x is spatially-autocorrelated

y_i multivariate descriptor of landscape (elevation, temperature, vegetation cover). Due to bio/geo-physical laws y is spatially-autocorrelated

Interest in testing H_0: x and y are independent
Are the Mantel tests appropriate?

A common implementation:
Are the Mantel tests appropriate?

A common implementation:

- x_i: mutivariate genotype or phenotype. Due to population history and limited mixing in space x is spatially-autocorrelated.
- y_i: multivariate descriptor of landscape (elevation, temperature, vegetation cover). Due to bio/geo-physical laws y is spatially-autocorrelated.
- Interest in testing H_0: x and y are independent.
A simulation study

Simulation to mimic the situation of one phenotypic variable and one environmental variable.

\[s_1, ..., s_n \]

with \(n = 50 \) sites in \([0, 1] \),

\[x(s_1), ..., x(s_n) \]

values of a GRF with exponential covariance and

\[y(s_1), ..., y(s_n) \]

values of a GRF with exponential covariance,

\[
\text{x and y independent commonly scale param. } \kappa_g
\]

G. Guillot (DTU) SSIAB 2012 May 2012 10 / 17
A simulation study

Simulation to mimic the situation of one phenotypic variable and one environmental variable.

- \(s_1, \ldots, s_n \) n=50 sites in \([0, 1]^2\)
- \(x(s_1), \ldots, x(s_n) \) values of a GRF with expo. covariance
- \(y(s_1), \ldots, y(s_n) \) values of a GRF with expo. covariance
- \(x \) and \(y \) independent
- common scale param. \(\kappa \)
Example of simulated data

Variable x

Variable y

Site-wise values

Pair-wise differences

Autocovariance and variogram functions

Cor(x,y) = 0.2

Cor(Dx,Dy) = -0.063

Correlation

Geographical (Euclidian) distance [m]
Simulation study (cont’)

- simulation above repeated for 200 realizations of x and y
- p-values for simple Mantel test
- p-value for partial Mantel test with matrix D^s entered to ”control the effect of space”.
- common scale param. κ varying from 0 to 0.7
- plot of ordered p-values against quantiles of a uniform distribution
- Under H_0, the p-values should be uniformly distributed [Schweder and Spjøtvoll, 1982]
Qq-plots of p-values obtained on simulated data
Qq-plots of p-values obtained on simulated data

Figure: Left: simple Mantel test. Middle: partial Mantel test, no drift. Right: partial Mantel test, RFs with linear trend.
What’s wrong with the Mantel tests?

Mantel tests are based on permutation of one of the data vector entries. Permutation of x values breaks the potential dependence between x and y. Also breaks the spatial structure of x!!

The Mantel test fallacy: $\text{cor}(D_x \tau, D_y) \neq \text{cor}(D_x, D_y)$
What’s wrong with the Mantel tests?

Mantel tests are based on permutation of one of the data vector entries

- Permutation of x values breaks the potential dependence between x and y
- Also breaks the spatial structure of x!!

The Mantel test fallacy:

$$\text{cor}(D^x_{\tau}, D^y) \overset{\mathcal{L}}{\neq} \text{cor}(D^x, D^y)$$
Alternative approaches

- Testing independence between two point processes
 - [Schlather et al., 2004]
- Modified t-test to account for auto-correlation
 - [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993]
- Extension to categorical data
 - [Cerioli, 2002]
- Restricted permutations:
 - for clumped geostatistical data: within-population permutation
 - lattice data: shift permutation
- Testing in a GLMM framework
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
- Extension to categorical data [Cerioli, 2002]
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
- Extension to categorical data [Cerioli, 2002]
- Restricted permutations:
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
- Extension to categorical data [Cerioli, 2002]
- Restricted permutations:
 - for clumped geostatistical data: within-population permutation
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
- Extension to categorical data [Cerioli, 2002]
- Restricted permutations:
 - for clumped geostatistical data: within-population permutation
 - lattice data: shift permutation
Alternative approaches

- Testing independence between two point processes [Schlather et al., 2004].
- Modified t-test to account for auto-correlation [Clifford et al., 1989, Richardson and Clifford, 1991, Dutilleul et al., 1993].
- Extension to categorical data [Cerioli, 2002]
- Restricted permutations:
 - for clumped geostatistical data: within-population permutation
 - lattice data: shift permutation
- Testing in a GLMM framework
Conclusion

Mantel tests are flawed in presence of structure in the data. This conclusion extends to other forms of structure (phylogenetic trees). A clear warning is timely.

Further work is needed on the side of computer program development. For more details, refer to the research report:

Thank you!
Conclusion

- Mantel tests are flawed in presence of structure in the data
- Conclusion extends to other form of structure (phylogentic trees)

Needs further work on the side of computer program development.

Research report:
Conclusion

- Mantel tests are flawed in presence of structure in the data
- Conclusion extends to other form of structure (phylogentic trees)
- A clear warning is timely

Research report:

Thank you!
Conclusion

- Mantel tests are flawed in presence of structure in the data
- Conclusion extends to other form of structure (phylogenetic trees)
- A clear warning is timely
- Needs further work on the side of computer program development
Conclusion

- Mantel tests are flawed in presence of structure in the data
- Conclusion extends to other form of structure (phylogentic trees)
- A clear warning is timely
- Needs further work on the side of computer program development

Research report:
Conclusion

- Mantel tests are flawed in presence of structure in the data
- Conclusion extends to other form of structure (phylogentic trees)
- A clear warning is timely
- Needs further work on the side of computer program development

Research report:

Thank you!
References

Testing mutual independence between two discrete-valued spatial processes: A correction to Pearson chi-squared.
Biometrics, 58:888–897.

Assessing the significance of the correlation between two spatial processes.

Modifying the t test for assessing the correlation between two spatial processes.

On the use of the simple and partial Mantel tests in presence of spatial auto-correlation.
arXiv:1112.0651v1.

The detection of disease clustering and a generalized regression approach.

Testing association between spatial processes.

Detecting dependence between marks and locations of marked point processes.

Plots of p-values to evaluate many tests simultaneously.

Multiple regression and correlation extensions of the Mantel test of matrix correspondence.